Characteristic polynomial and higher order traces of third order three dimensional tensors
Guimei ZHANG , Shenglong HU
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 225 -237.
Characteristic polynomial and higher order traces of third order three dimensional tensors
Eigenvalues of tensors play an increasingly important role in many aspects of applied mathematics. The characteristic polynomial provides one of a very few ways that shed lights on intrinsic understanding of the eigenvalues. It is known that the characteristic polynomial of a third order three dimensional tensor has a stunning expression with more than 20000 terms, thus prohibits an effective analysis. In this article, we are trying to make a concise representation of this characteristic polynomial in terms of certain basic determinants. With this, we can successfully write out explicitly the characteristic polynomial of a third order three dimensional tensor in a reasonable length. An immediate benefit is that we can compute out the third and fourth order traces of a third order three dimensional tensor symbolically, which is impossible in the literature.
Tensor / traces / characteristic polynomial
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |