Sharp bounds for Hardy type operators on higher-dimensional product spaces

Qianjun HE, Xiang LI, Dunyan YAN

PDF(282 KB)
PDF(282 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1341-1353. DOI: 10.1007/s11464-018-0740-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp bounds for Hardy type operators on higher-dimensional product spaces

Author information +
History +

Abstract

We investigate a class of fractional Hardy type operators Hβ1,β2,,βm defined on higher-dimensional product spaces n1×n2××nm and use novel methods to obtain their sharp bounds. In particular, we optimize the result due to S. M. Wang, S. Z. Lu, and D. Y. Yan [Sci. China Math., 2012, 55(12): 2469–2480].

Keywords

Hardy type operators / power weight / sharp bounds

Cite this article

Download citation ▾
Qianjun HE, Xiang LI, Dunyan YAN. Sharp bounds for Hardy type operators on higher-dimensional product spaces. Front. Math. China, 2018, 13(6): 1341‒1353 https://doi.org/10.1007/s11464-018-0740-x

References

[1]
Barza S, Persson L E, Samko N. Some new sharp limit Hardy-type inequalities via convexity. J Inequal Appl, 2014, 2014(1): 6–16
CrossRef Google scholar
[2]
Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46
CrossRef Google scholar
[3]
Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13(1): 1–24
CrossRef Google scholar
[4]
Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math, 2015, 27(5): 2825–2851
CrossRef Google scholar
[5]
Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426
CrossRef Google scholar
[6]
Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6: 314–317
CrossRef Google scholar
[7]
Hardy G H, Littlewood J E, Pólya G. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952
[8]
Kufner A, Persson L-E. Weighted Inequalities of Hardy Type. River Edge: World Scientific Publishing Co Inc, 2003
CrossRef Google scholar
[9]
Lu S Z, Yan D Y, Zhao F Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(1): 148–159
CrossRef Google scholar
[10]
Lu S Z, Zhao F Y. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015, 18(1): 233–240
[11]
Muckenhoupt B. Hardy inequality with weights. Studia Math, 1972, 44: 31–38
CrossRef Google scholar
[12]
Persson L E, Samko S G. A note on the best constants in some Hardy inequalities. J Math Inequal, 2015, 9(2): 437–447
CrossRef Google scholar
[13]
Sawyer E. Weighted inequalities for the two-dimensional Hardy operators. Studia Math, 1985, 82: 1–6
CrossRef Google scholar
[14]
Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy's inequality with power weight on n-dimensional product spaces. Sci China Math, 2012, 55(12): 2469–2480
CrossRef Google scholar
[15]
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40(2): 635–654
CrossRef Google scholar
[16]
Wu Q Y, Fu Z W. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J Math Anal, 2018, 12(4): 909–934
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(282 KB)

Accesses

Citations

Detail

Sections
Recommended

/