Sharp bounds for Hardy type operators on higher-dimensional product spaces

Qianjun HE , Xiang LI , Dunyan YAN

Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1341 -1353.

PDF (282KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1341 -1353. DOI: 10.1007/s11464-018-0740-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp bounds for Hardy type operators on higher-dimensional product spaces

Author information +
History +
PDF (282KB)

Abstract

We investigate a class of fractional Hardy type operators Hβ1,β2,,βm defined on higher-dimensional product spaces n1×n2××nm and use novel methods to obtain their sharp bounds. In particular, we optimize the result due to S. M. Wang, S. Z. Lu, and D. Y. Yan [Sci. China Math., 2012, 55(12): 2469–2480].

Keywords

Hardy type operators / power weight / sharp bounds

Cite this article

Download citation ▾
Qianjun HE, Xiang LI, Dunyan YAN. Sharp bounds for Hardy type operators on higher-dimensional product spaces. Front. Math. China, 2018, 13(6): 1341-1353 DOI:10.1007/s11464-018-0740-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barza S, Persson L E, Samko N. Some new sharp limit Hardy-type inequalities via convexity. J Inequal Appl, 2014, 2014(1): 6–16

[2]

Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46

[3]

Chuong N M, Hong N T, Hung H D. Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces. Front Math China, 2018, 13(1): 1–24

[4]

Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math, 2015, 27(5): 2825–2851

[5]

Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426

[6]

Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6: 314–317

[7]

Hardy G H, Littlewood J E, Pólya G. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952

[8]

Kufner A, Persson L-E. Weighted Inequalities of Hardy Type. River Edge: World Scientific Publishing Co Inc, 2003

[9]

Lu S Z, Yan D Y, Zhao F Y. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(1): 148–159

[10]

Lu S Z, Zhao F Y. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015, 18(1): 233–240

[11]

Muckenhoupt B. Hardy inequality with weights. Studia Math, 1972, 44: 31–38

[12]

Persson L E, Samko S G. A note on the best constants in some Hardy inequalities. J Math Inequal, 2015, 9(2): 437–447

[13]

Sawyer E. Weighted inequalities for the two-dimensional Hardy operators. Studia Math, 1985, 82: 1–6

[14]

Wang S M, Lu S Z, Yan D Y. Explicit constants for Hardy's inequality with power weight on n-dimensional product spaces. Sci China Math, 2012, 55(12): 2469–2480

[15]

Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40(2): 635–654

[16]

Wu Q Y, Fu Z W. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J Math Anal, 2018, 12(4): 909–934

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (282KB)

1019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/