Smooth densities for SDEs driven by subordinated Brownian motion with Markovian switching

Xiaobin SUN , Yingchao XIE

Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1447 -1467.

PDF (369KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1447 -1467. DOI: 10.1007/s11464-018-0735-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Smooth densities for SDEs driven by subordinated Brownian motion with Markovian switching

Author information +
History +
PDF (369KB)

Abstract

We consider a class of stochastic differential equations driven by subordinated Brownian motion with Markovian switching. We use Malliavin calculus to study the smoothness of the density for the solution under uniform Hörmander type condition.

Keywords

Malliavin calculus / Markovian switching / smoothness of density / subordinated Brownian motion

Cite this article

Download citation ▾
Xiaobin SUN, Yingchao XIE. Smooth densities for SDEs driven by subordinated Brownian motion with Markovian switching. Front. Math. China, 2018, 13(6): 1447-1467 DOI:10.1007/s11464-018-0735-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Basak G, Bisi A, Ghosh M. Stability of a random diusion with linear drift. J Math Anal Appl, 1996, 202(2): 604–622

[2]

Forster B, Lütkebohmert E, Teichmann J. Absolutely continuous laws of jump-diusions in nite and innite dimensions with application to mathematical nance. SIAM J Math Anal, 2009, 40(5): 2132–2153

[3]

Hu Y, Nualart D, Sun X, Xie Y. Smoothness of density for stochastic differential equations with Markovian switching. Discrete Contin Dyn Syst Ser B,

[4]

Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J Math, 2010, 50(3): 491–520

[5]

Malliavin P. Stochastic Analysis. Berlin: Springer-Verlag, 1997

[6]

Mao X. Stability of stochastic differential equations with Markovian switching. Stochastic Process Appl, 1999, 79(1): 45–67

[7]

Nualart D. The Malliavin Calculus and Related Topics. Berlin: Springer, 2006

[8]

Xi F. On the stability of jump-diusions with Markovian switching. J Math Anal Appl, 2008, 341(1): 588–600

[9]

Yin G, Zhu C. Hybrid Switching Diusions: Properties and Applications. New York: Springer, 2010

[10]

Yuan C, Mao X. Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stochastic Process Appl, 2003, 103(2): 277{291

[11]

Zhang X. Densities for SDEs driven by degenerate-stable processes. Ann Probab, 2014, 42(5): 1885–1910

[12]

Zhang X. Fundamental solutions of nonlocal Hormander's operators. Commun Math Stat, 2016, 4(3): 359–402

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (369KB)

888

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/