On c#-normal subgroups in finite groups

Huaquan WEI , Qiao DAI , Hualian ZHANG , Yubo LV , Liying YANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1169 -1178.

PDF (140KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1169 -1178. DOI: 10.1007/s11464-018-0724-x
RESEARCH ARTICLE
RESEARCH ARTICLE

On c#-normal subgroups in finite groups

Author information +
History +
PDF (140KB)

Abstract

A subgroup H of a finite group G is called a c#-normal subgroup of G if there exists a normal subgroup K of G such that G = HK and HK is a CAP-subgroup of G. In this paper, we investigate the influence of fewer c#-normal subgroups of Sylow p-subgroups on the p-supersolvability, p-nilpotency, and supersolvability of finite groups. We obtain some new sufficient and necessary conditions for a group to be p-supersolvable, p-nilpotent, and supersolvable. Our results improve and extend many known results.

Keywords

Finite group / c#-normal / p-supersolvable / p-nilpotent / supersolvable

Cite this article

Download citation ▾
Huaquan WEI, Qiao DAI, Hualian ZHANG, Yubo LV, Liying YANG. On c#-normal subgroups in finite groups. Front. Math. China, 2018, 13(5): 1169-1178 DOI:10.1007/s11464-018-0724-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaad M. On maximal subgroups of Sylow subgroups of finite groups. Comm Algebra, 1998, 26(11): 3647–3652

[2]

Ballester-Bolinches A, Wang Y. Finite groups with some c-normal minimal subgroups. J Pure Appl Algebra, 2000, 153: 121–127

[3]

Doerk K, Hawkes T. Finite Soluble Groups. Berlin-New York: Walter de Gruyter, 1992

[4]

Ezquerro L M. A contribution to the theory of finite supersolvable groups. Rend Semin Mat Univ Padova, 1993, 89: 161–170

[5]

Fan Y, Guo X, Shum K P. Remarks on two generalizations of normality of subgroups. Chinese Ann Math Ser A, 2006, 27(2): 169–176 (in Chinese)

[6]

Gaschutz W. Praefrattini gruppen. Arch Math, 1962, 13: 418–426

[7]

Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch Math, 2003, 80: 561–569

[8]

Li S, Shen Z, Liu X. The influence of SS-quasinormality of some subgroups on the structure of finite groups. J Algebra, 2007, 319: 4275–4287

[9]

Wang Y. c-normality of groups and its properties. J Algebra, 1996, 180: 954–965

[10]

Wang Y, Wei H. c#-normality of groups and its properties. Algebr Represent Theory, 2013, 16(1): 193–204

[11]

Wei H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 2001, 29(5): 2193–2200

[12]

Wei H. Some Characteristics of Subgroups and the Structure of Finite Groups. Ph D Dissertation. Guangzhou: Sun Yat-Sen University, 2006 (in Chinese)

[13]

Wei H, Gu W, Pan H. On c∗-normal subgroups in finite groups. Acta Math Sin (Engl Ser), 2012, 28(3): 623–630

[14]

Wei H, Wang Y. On c∗-normality and its properties. J Group Theory, 2007, 10(2): 211–223

[15]

Wei H, Wang Y. The c-supplemented property of finite groups. Proc Edinb Math Soc, 2007, 50(2): 477–492

[16]

Wei H, Wang Y, Li Y. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Comm Algebra, 2003, 31(10): 4807–4816

[17]

Wei H, Wang Y, Yang L. The c-normal embedding property in finite groups (I). Algebra Colloq, 2010, 17(3): 495–506

[18]

Xu M. An Introduce to Finite Groups. Beijing: Science Press, 2001 (in Chinese)

[19]

Yang L, Wei H, Lu R. On c∗-normal subgroups of p-power order in a finite group. Comm Algebra, 2014, 42(1): 164–173

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (140KB)

732

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/