Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth

Chungen LIU , Li ZUO , Xiaofei ZHANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1063 -1073.

PDF (147KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1063 -1073. DOI: 10.1007/s11464-018-0721-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth

Author information +
History +
PDF (147KB)

Keywords

Hamiltonian system / minimal period / Fenchel’s transform / subdifferential

Cite this article

Download citation ▾
Chungen LIU, Li ZUO, Xiaofei ZHANG. Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth. Front. Math. China, 2018, 13(5): 1063-1073 DOI:10.1007/s11464-018-0721-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An T, Wang Z. Periodic solutions of Hamiltonian systems with anisotropic growth. Commun Pure Appl Anal, 2010, 9: 1069–1082

[2]

Aubin J-P. Mathematical Methods of Game and Economic Theory. Amsterdam: North-Holland, 1979

[3]

Clarke F H, Ekeland I. Hamiltonian trajectories having prescribed minimal period. Comm Pure Appl Math, 1980, 33: 103–116

[4]

Dong D, Long Y. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans Amer Math Soc, 1997, 349: 2619–2661

[5]

Ekeland I. Convexity Methods in Hamiltonian Mechanics. Berlin: Springer, 1990

[6]

Ekeland I, Hofer H. Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent Math, 1985, 81: 155–188

[7]

Fei G, Kim S, Wang T. Minimal period estimates of period solutions for superquadratic Hamiltonian systems. J Math Anal Appl, 1999, 238: 216–233

[8]

Fei G, Qiu Q. Minimal period solutions of nonlinear Hamiltonian systems. Nonlinear Anal, 1996, 27: 821–839

[9]

Felmer P L. Periodic solutions of “superquadratic” Hamiltonian systems. J Differential Equations, 1993, 18: 188–207

[10]

Li C. The study of minimal period estimates for brake orbits of autonomous subquadratic Hamiltonian systems. Acta Math Sin (Engl Ser), 2015, 31: 1645–1658

[11]

Liu C. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin Dyn Syst, 2010, 27: 337–355

[12]

Liu C, Zhang X. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete Contin Dyn Syst, 2017, 37: 1559–1574

[13]

Long Y. The minimal period problem for classical Hamiltonian systems with even potentials. Ann Inst H Poincaré Anal Non Linéaire, 1993, 10: 605–626

[14]

Long Y. The minimal period problem of periodic solutions for autonomous superquadratic second order Hamiltonian systems. J Differential Equations, 1994, 111: 147–174

[15]

Long Y. On the minimal period for periodic solutions of nonlinear Hamiltonian systems. Chin Ann Math Ser B, 1997, 18: 481–485

[16]

Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Berlin: Springer, 1989

[17]

Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184

[18]

Rabinowitz P H. Periodic solutions of Hamiltonian systems: a survey. SIAM J Math Anal, 1982, 13: 343–352

[19]

Roberts A, Varberg D. Another proof that convex functions are locally Lipschitz. Amer Math Monthly, 1974, 81: 1014–1016

[20]

Xing Q, Guo F, Zhang X. One generalized critical point theorem and its applications on super-quadratic Hamiltonian systems. Taiwanese J Math, 2016, 20: 1093–1116

[21]

Zhang D. Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems. Sci China Math, 2014, 57: 81–96

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (147KB)

684

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/