Approximation theorem for principle eigenvalue of discrete p-Laplacian

Yueshuang LI

PDF(293 KB)
PDF(293 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1045-1061. DOI: 10.1007/s11464-018-0717-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximation theorem for principle eigenvalue of discrete p-Laplacian

Author information +
History +

Abstract

For the principle eigenvalue of discrete weighted p-Laplacian on the set of nonnegative integers, the convergence of an approximation procedure and the inverse iteration is proved. Meanwhile, in the proof of the convergence, the monotonicity of an approximation sequence is also checked. To illustrate these results, some examples are presented.

Keywords

Principle eigenvalue / weighted p-Laplacian / inverse iteration / approximation theorem

Cite this article

Download citation ▾
Yueshuang LI. Approximation theorem for principle eigenvalue of discrete p-Laplacian. Front. Math. China, 2018, 13(5): 1045‒1061 https://doi.org/10.1007/s11464-018-0717-9

References

[1]
Biezuner R J, Ercole G, Martins E M. Computing the first eigenvalue of the p-Laplacian via the inverse power method. J Funct Anal, 2009, 257: 243–270
CrossRef Google scholar
[2]
Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Ser A, 2001, 44(4): 409–418
CrossRef Google scholar
[3]
Chen M F. Speed of stability for birth–death processes. Front Math China, 2010, 5(3): 379–515
CrossRef Google scholar
[4]
Chen M F. Efficient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418. A package based on the paper is available onhttps://cran.r-project.org/web/packages/EfficientMaxEigenpair/index.htmlA MatLab package see Chen’s homepage
CrossRef Google scholar
[5]
Chen M F. Efficient algorithm for principal eigenpair of discrete p-Laplacian. Front Math China, 2018, 13(3): 509–524
CrossRef Google scholar
[6]
Chen M F, Wang L D, Zhang Y H. Mixed eigenvalues of discrete p-Laplacian. Front Math China, 2014, 9(6): 1261–1292
CrossRef Google scholar
[7]
Ercole G. An inverse iteration method for obtaining q-eigenpairs of the p-Laplacian in a general bounded domain. arXiv: 1510.03941
[8]
Hein M, Bühler T. An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Advances in Neural Information Processing Systems, 2010, 23: 847–855
[9]
Hynd R, Lindgren E. Inverse iteration for p-ground states. Proc Amer Math Soc, 2016, 144(5): 2121–2131
CrossRef Google scholar
[10]
Li Y S. The inverse iteration method for discrete weighted p-Laplacian. MS Thesis, Beijing Normal University, 2017 (in Chinese)

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/