Approximation theorem for principle eigenvalue of discrete p-Laplacian

Yueshuang LI

Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1045 -1061.

PDF (293KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1045 -1061. DOI: 10.1007/s11464-018-0717-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Approximation theorem for principle eigenvalue of discrete p-Laplacian

Author information +
History +
PDF (293KB)

Abstract

For the principle eigenvalue of discrete weighted p-Laplacian on the set of nonnegative integers, the convergence of an approximation procedure and the inverse iteration is proved. Meanwhile, in the proof of the convergence, the monotonicity of an approximation sequence is also checked. To illustrate these results, some examples are presented.

Keywords

Principle eigenvalue / weighted p-Laplacian / inverse iteration / approximation theorem

Cite this article

Download citation ▾
Yueshuang LI. Approximation theorem for principle eigenvalue of discrete p-Laplacian. Front. Math. China, 2018, 13(5): 1045-1061 DOI:10.1007/s11464-018-0717-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biezuner R J, Ercole G, Martins E M. Computing the first eigenvalue of the p-Laplacian via the inverse power method. J Funct Anal, 2009, 257: 243–270

[2]

Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Ser A, 2001, 44(4): 409–418

[3]

Chen M F. Speed of stability for birth–death processes. Front Math China, 2010, 5(3): 379–515

[4]

Chen M F. Efficient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418. A package based on the paper is available onA MatLab package see Chen’s homepage

[5]

Chen M F. Efficient algorithm for principal eigenpair of discrete p-Laplacian. Front Math China, 2018, 13(3): 509–524

[6]

Chen M F, Wang L D, Zhang Y H. Mixed eigenvalues of discrete p-Laplacian. Front Math China, 2014, 9(6): 1261–1292

[7]

Ercole G. An inverse iteration method for obtaining q-eigenpairs of the p-Laplacian in a general bounded domain. arXiv: 1510.03941

[8]

Hein M, Bühler T. An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Advances in Neural Information Processing Systems, 2010, 23: 847–855

[9]

Hynd R, Lindgren E. Inverse iteration for p-ground states. Proc Amer Math Soc, 2016, 144(5): 2121–2131

[10]

Li Y S. The inverse iteration method for discrete weighted p-Laplacian. MS Thesis, Beijing Normal University, 2017 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (293KB)

1008

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/