Hermitizable, isospectral complex matrices or differential operators

Mu-Fa CHEN

Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1267 -1311.

PDF (514KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1267 -1311. DOI: 10.1007/s11464-018-0716-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Hermitizable, isospectral complex matrices or differential operators

Author information +
History +
PDF (514KB)

Abstract

The main purpose of the paper is looking for a larger class of matrices which have real spectrum. The first well-known class having this property is the symmetric one, then is the Hermite one. This paper introduces a new class, called Hermitizable matrices. The closely related isospectral problem, not only for matrices but also for differential operators is also studied. The paper provides a way to describe the discrete spectrum, at least for tridiagonal matrices or one-dimensional differential operators. Especially, an unexpected result in the paper says that each Hermitizable matrix is isospectral to a birth–death type matrix (having positive sub-diagonal elements, in the irreducible case for instance). Besides, new efficient algorithms are proposed for computing the maximal eigenpairs of these class of matrices.

Keywords

Real spectrum / symmetrizable / Hermitizable / isospectral / matrix / differential operator

Cite this article

Download citation ▾
Mu-Fa CHEN. Hermitizable, isospectral complex matrices or differential operators. Front. Math. China, 2018, 13(6): 1267-1311 DOI:10.1007/s11464-018-0716-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berezanskii Yu M, Samoilenko V G. On the self-adjointness of differential operators with finitely or infinitely many variables, and evolution equations. Russian Math Surveys, 1981, 36(5): 1–62

[2]

Brustentsev A G. (2004). Selfadjointness of elliptic differential operators in L2(G), and correction potentials. Trans Moscow Math Soc, 2004, 65: 31–61

[3]

Cao Z H. Eigenvalue Problem of Matrices. Shanghai: Shanghai Press of Sci & Tech, 1983 (in Chinese)

[4]

Chen M F. Exponential L2-convergence and L2-spectral gap for Markov processes. Acta Math Sin, New Ser, 1991, 7(1): 19–37

[5]

Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004 (1st ed, 1992)

[6]

Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005

[7]

Chen M F. Speed of stability for birth–death processes. Front Math China, 2010, 5(3): 379–515

[8]

Chen M F. Criteria for discrete spectrum of 1D operators. Commun Math Stat, 2014, 2: 279–309

[9]

Chen M F. Efficient initials for computing the maximal eigenpair. Front Math China, 2016, 11(6): 1379–1418 See also volume 4 in the middle of the author’s homepage: A package based on the paper is available on CRAN (by X. J. Mao): A MatLab package is also available, see the author’s homepage above

[10]

Chen M F. The charming leading eigenpair. Adv Math (China), 2017, 46(4): 281–297

[11]

Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5): 1023–1043

[12]

Chen M F. Trilogy on computing maximal eigenpair. In: Yue W, Li Q L, Jin S, Ma Z, eds. Queueing Theory and Network Applications. QTNA 2017. Lecture Notes in Comput Sci, Vol 10591. Cham: Springer, 2017, 312–329

[13]

Chen M F. Mathematical topics motivated from statistical physics (I). Sci Sin Math, 2018 (to appear, in Chinese)

[14]

Chen M F. Mathematical topics motivated from statistical physics (II). Sci Sin Math, 2018 (to appear, in Chinese)

[15]

Chen M F, Zhang X. Isospectral operators. Commun Math Stat, 2014, 2: 17–32

[16]

Frolov A V, . Thomas algorithm, pointwise version.

[17]

Hou Z T, Chen M F. Markov Processes and field theory (Abstract). Kuoxue Tongbao, 1980, 25(10): 807–811 (Complete version appeared in [23; pages 194–242])

[18]

Kato T. Remarks on the selfadjointness and related problems for differential operators. In: Knowles I W, Lewis R T, eds. Spectral Theory of Differential Operators. Amsterdam: North Holland, 1981, 253–266

[19]

Kolmogorov A N. Zur Theorie der Markoffschen Ketten. Math Ann, 1936, 112: 155–160 (English translation: On the theory of Markov ehains. Article 21 in Selected Works of A. N. Kolmogorov, Vol II: Probability Theory and Mathematical Statistics, 182–187, edited by Shiryayev A N. Moscow: Nauka, 1986. Translated by Undquist G. Springer 1992)

[20]

Kolmogorov A N. Zur Umkehrbarkeit der statistischen Naturgesetze. Math Ann, 1937, 113: 766–772 (English translation: On the reversibility of the statistical laws of nature. Article 24 in Selected Works of A. N. Kolmogorov, Vol II: 209–215)

[21]

Ludyk G. Quantum Mechanics in Matrix Form. Undergraduate Lecture Notes in Physics. Berlin: Springer, 2018

[22]

Nino A, Munoz-Caro C, Reyes S. A concurrent object-oriented approach to the eigenproblem treatment in shared memory multicore environments. In: Lecture Notes in Comput Sci, Vol 6782. Cham: Springer, 2011, 630–642

[23]

Qian M, Hou Z T, eds. Reversible Markov Processes. Changsha: Hunan Sci & Tech Press, 1979 (in Chinese)

[24]

Schrödinger E. Über die Umkehrung der Naturgesetze. Sitzungsber Preuss, Akad Wiss, Phys-Math KI, 12 März, 1931, 144–153

[25]

Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by modified Householder transformation. Proc Japan Acad Ser A, 1996, 72: 102–103

[26]

Tang T, Yang J. Computing the maximal eigenpairs of large size tridiagonal matrices with O(l)number of iterations. Numer Math Theory Methods Appl, 2018, 11(4): 877–894

[27]

Varga R S. Geršgorin and His Circles. Berlin: Springer, 2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (514KB)

1216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/