Torsion pairs in recollements of abelian categories

Xin MA, Zhaoyong HUANG

PDF(285 KB)
PDF(285 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 875-892. DOI: 10.1007/s11464-018-0712-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Torsion pairs in recollements of abelian categories

Author information +
History +

Abstract

For a recollement (A ;ℬ; C ) of abelian categories, we show that torsion pairs in A and C can induce torsion pairs in ℬ; and the converse holds true under certain conditions.

Keywords

Torsion pairs / recollements / abelian categories

Cite this article

Download citation ▾
Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories. Front. Math. China, 2018, 13(4): 875‒892 https://doi.org/10.1007/s11464-018-0712-1

References

[1]
Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997
[2]
Beĭlinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5{171
[3]
Beligiannis A, Reiten I. Homological and Homotopical Aspects of Torsion Theories. Mem Amer Math Soc, Vol 188, No 883. Providence: Amer Math Soc, 2007
[4]
Chen J M. Cotorsion pairs in a recollement of triangulated categories. Comm Algebra, 2013, 41: 2903–2915
[5]
Cline E,Parshall B, Scott L. Derived categories and Morita theory. J Algebra, 1986, 104: 397–409
[6]
Cline E, Parshall B, Scott L. Finite-dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85–99
[7]
Dickson S E. A torsion theory for Abelian categories. Trans Amer Math Soc, 1966, 121: 223–235
[8]
Franjou V, Pirashvili T. Comparison of abelian categories recollements. Doc Math, 2004, 9: 41–56
[9]
Gentle R. T.T.F. theories in abelian categories. Comm Algebra, 1988, 16: 877–908
[10]
Happel D, Reiten I, Smalø S O. Tilting in Abelian Categories and Quasitilted Algebras. Mem Amer Math Soc, Vol 120, No 575. Providence: Amer Math Soc, 1996
[11]
Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117–168
[12]
Jans J P. Some aspects of torsion. Pacific J Math, 1965, 15: 1249–1259
[13]
Juteau D. Decomposition numbers for perverse sheaves. Ann Inst Fourier (Grenoble), 2009, 59: 1177–1229
[14]
Kuhn N J. Generic representations of the finite general linear groups and the Steenrod algebra II. K-Theory, 1994, 8: 395–428
[15]
Kuhn N J. A stratification of generic representation theory and generalized Schur algebras. K-Theory, 2002, 26: 15–49
[16]
Lin Y N, Wang M X.From recollement of triangulated categories to recollement of abelian categories. Sci China Math, 2010, 53: 1111–1116
[17]
Lin Z Q, Wang M X. Koenig's theorem for recollements of module categories. Acta Math Sinica (Chin Ser), 2011, 54: 461–466 (in Chinese)
[18]
Liu Q H, Vitória J, Yang D. Gluing silting objects. Nagoya Math J, 2014, 216: 117–151
[19]
Pirashvili T I. Polynomial functors. Trudy Tbiliss Mat Inst Razmadze Akad Nauk Gruzin SSR, 1988, 91: 55–66
[20]
Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
[21]
Psaroudakis C, Skartsæterhagen Ø, SolbergØ. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans Amer Math Soc (Ser B), 2014, 1: 45–95
[22]
Psaroudakis C, Vitória J. Recollements of module categories. Appl Categ Structures, 2014, 22: 579–593

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(285 KB)

Accesses

Citations

Detail

Sections
Recommended

/