Torsion pairs in recollements of abelian categories

Xin MA , Zhaoyong HUANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 875 -892.

PDF (285KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 875 -892. DOI: 10.1007/s11464-018-0712-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Torsion pairs in recollements of abelian categories

Author information +
History +
PDF (285KB)

Abstract

For a recollement (A ;ℬ; C ) of abelian categories, we show that torsion pairs in A and C can induce torsion pairs in ℬ; and the converse holds true under certain conditions.

Keywords

Torsion pairs / recollements / abelian categories

Cite this article

Download citation ▾
Xin MA, Zhaoyong HUANG. Torsion pairs in recollements of abelian categories. Front. Math. China, 2018, 13(4): 875-892 DOI:10.1007/s11464-018-0712-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997

[2]

Beĭlinson A A, Bernstein J, Deligne P. Faisceaux pervers, analysis and topology on singular spaces, I. Astérisque, 1982, 100: 5{171

[3]

Beligiannis A, Reiten I. Homological and Homotopical Aspects of Torsion Theories. Mem Amer Math Soc, Vol 188, No 883. Providence: Amer Math Soc, 2007

[4]

Chen J M. Cotorsion pairs in a recollement of triangulated categories. Comm Algebra, 2013, 41: 2903–2915

[5]

Cline E,Parshall B, Scott L. Derived categories and Morita theory. J Algebra, 1986, 104: 397–409

[6]

Cline E, Parshall B, Scott L. Finite-dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85–99

[7]

Dickson S E. A torsion theory for Abelian categories. Trans Amer Math Soc, 1966, 121: 223–235

[8]

Franjou V, Pirashvili T. Comparison of abelian categories recollements. Doc Math, 2004, 9: 41–56

[9]

Gentle R. T.T.F. theories in abelian categories. Comm Algebra, 1988, 16: 877–908

[10]

Happel D, Reiten I, Smalø S O. Tilting in Abelian Categories and Quasitilted Algebras. Mem Amer Math Soc, Vol 120, No 575. Providence: Amer Math Soc, 1996

[11]

Iyama O, Yoshino Y. Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent Math, 2008, 172: 117–168

[12]

Jans J P. Some aspects of torsion. Pacific J Math, 1965, 15: 1249–1259

[13]

Juteau D. Decomposition numbers for perverse sheaves. Ann Inst Fourier (Grenoble), 2009, 59: 1177–1229

[14]

Kuhn N J. Generic representations of the finite general linear groups and the Steenrod algebra II. K-Theory, 1994, 8: 395–428

[15]

Kuhn N J. A stratification of generic representation theory and generalized Schur algebras. K-Theory, 2002, 26: 15–49

[16]

Lin Y N, Wang M X.From recollement of triangulated categories to recollement of abelian categories. Sci China Math, 2010, 53: 1111–1116

[17]

Lin Z Q, Wang M X. Koenig's theorem for recollements of module categories. Acta Math Sinica (Chin Ser), 2011, 54: 461–466 (in Chinese)

[18]

Liu Q H, Vitória J, Yang D. Gluing silting objects. Nagoya Math J, 2014, 216: 117–151

[19]

Pirashvili T I. Polynomial functors. Trudy Tbiliss Mat Inst Razmadze Akad Nauk Gruzin SSR, 1988, 91: 55–66

[20]

Psaroudakis C. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110

[21]

Psaroudakis C, Skartsæterhagen Ø, SolbergØ. Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements. Trans Amer Math Soc (Ser B), 2014, 1: 45–95

[22]

Psaroudakis C, Vitória J. Recollements of module categories. Appl Categ Structures, 2014, 22: 579–593

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (285KB)

1199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/