Realization of Poisson enveloping algebra

Can ZHU , Yaxiu WANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 999 -1011.

PDF (179KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 999 -1011. DOI: 10.1007/s11464-018-0708-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Realization of Poisson enveloping algebra

Author information +
History +
PDF (179KB)

Abstract

For a Poisson algebra, the category of Poisson modules is equivalent to the module category of its Poisson enveloping algebra, where the Poisson enveloping algebra is an associative one. In this article, for a Poisson structure on a polynomial algebra S, we first construct a Poisson algebra R, then prove that the Poisson enveloping algebra of S is isomorphic to the specialization of the quantized universal enveloping algebra of R, and therefore, is a deformation quantization of R.

Keywords

Poisson enveloping algebra / quantized universal enveloping algebra / deformation quantization

Cite this article

Download citation ▾
Can ZHU, Yaxiu WANG. Realization of Poisson enveloping algebra. Front. Math. China, 2018, 13(4): 999-1011 DOI:10.1007/s11464-018-0708-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown K A, Gordon I. Poisson orders, symplectic reflection algebras and representation theory. J Reine Angew Math, 2003, 559: 193–216

[2]

Calaque D, Felder G, Rossi C. Deformation quantization with generators and relations. J Algebra, 2011, 337: 1–12

[3]

Dolgushev V A. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228

[4]

Huebschmann J. Poisson cohomology and quantization. J Reine Angew Math, 1990, 408: 57–113

[5]

Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216

[6]

J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Hopf algebras. J Algebra, 2015, 426: 92–136

[7]

J, Wang X, Zhuang G. Universal enveloping algebras of Poisson Ore extensions. Proc Amer Math Soc, 2015, 143: 4633–4645

[8]

J, Wang X, Zhuang G. DG Poisson algebra and its universal enveloping algebra. Sci China Math, 2016, 59: 849–860

[9]

J, Wang X, Zhuang G. Homological unimodularity and Calabi-Yau condition for Poisson algebras. Lett Math Phys, 2017, 107: 1715–1740

[10]

Oh S Q. Poisson enveloping algebras. Comm Algebra, 1999, 27: 2181–2186

[11]

Oh S Q, Park C G, Shin Y Y. A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras. Comm Algebra, 2002, 30: 4867–4887

[12]

Penkava M, Vanhaecke P. Deformation quantization of polynomial Poisson algebras. J Algebra, 2000, 227: 365–393

[13]

Rinehart G. Differential forms on general commutative algebras. Trans Amer Math Soc, 1963, 108: 195–222

[14]

Shoikhet B. Kontsevich formality and PBW algebras. arXiv: 0708.1634

[15]

Shoikhet B. The PBW property for associative algebras as an integrability conditions. Math Res Lett, 2014, 21: 1407–1434

[16]

Towers M. Poisson and Hochschild cohomology and the semiclassical limit. J Noncommut Geom, 2015, 9: 665–696

[17]

Umirbaev U. Universal enveloping algebras and universal derivations of Poisson algebras. J Algebra, 2012, 354: 77–94

[18]

Vancliff M. Primitive and Poisson spectra of twists of polynomial rings. Algebr Represent Theory, 1999, 3: 269–285

[19]

Weinstein A. The local structure of Poisson manifolds. J Differential Geom, 1982, 18: 523–557

RIGHTS & PERMISSIONS

©后内容,如Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (179KB)

698

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/