Moderate deviations for Euler-Maruyama approximation of Hull-White stochastic volatility model

Yunshi GAO , Hui JIANG , Shaochen WANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 809 -832.

PDF (438KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 809 -832. DOI: 10.1007/s11464-018-0705-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Moderate deviations for Euler-Maruyama approximation of Hull-White stochastic volatility model

Author information +
History +
PDF (438KB)

Abstract

We consider the Euler-Maruyama discretization of stochastic volatility model

dSt=σtStdWt,dσt=ωσtdZt,t[0,T]
which has been widely used in nancial practice, where Wt,Zt,t[0,T] are two uncorrelated standard Brownian motions. Using asymptotic analysis techniques, the moderate deviation principles for log Sn (or log |Sn| in case Sn is negative) are obtained as n under different discretization schemes for the asset price process St and the volatility process σt: Numerical simulations are presented to compare the convergence speeds in different schemes.

Keywords

Euler-Maruyama discretization / Hull-White stochastic volatility model / moderate deviation principle

Cite this article

Download citation ▾
Yunshi GAO, Hui JIANG, Shaochen WANG. Moderate deviations for Euler-Maruyama approximation of Hull-White stochastic volatility model. Front. Math. China, 2018, 13(4): 809-832 DOI:10.1007/s11464-018-0705-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bally V, Talay D. The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab Theory Related Fields, 1995, 104: 43–60

[2]

Dembo A, Zeitouni O. Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 1988

[3]

Ellis R. Entropy, Large Deviations, and Statistical Mechanics. Grundlehren Math Wiss, Vol 271. Berlin: Springer, 2005

[4]

Fabian V. On asymptotic normality in stochastic approximation. Ann Math Statist, 1968, 39: 1327–1332

[5]

Friz P, Gerhold S, Pinter A. Option pricing in the moderate deviations regime. Math Finance,

[6]

Gao F, Wang S. Asymptotic behaviors for functionals of random dynamical systems. Stoch Anal Appl, 2016, 34(2): 258–277

[7]

Gulisashvili A, Stein E M. Implied volatility in the Hull-White model. Math Finance, 2009, 19(2): 303–327

[8]

Guyon J. Euler scheme and tempered distributions. Stochastic Process Appl, 2006, 116(6): 877–904

[9]

Hull J, White A. Pricing of options on assets with stochastic volatilities. J Finance, 1987, 42: 281–300

[10]

Jiang H, Wang S. Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions. J Multivariate Anal, 2017, 156: 57–69

[11]

Kloeden P E, Platen E. Numerical Solution of Stochastic Differential Equations. Berlin: Springer, 1992

[12]

Pan G, Wang S, Zhou W. Limit theorems for linear spectrum statistics of orthogonal polynomial ensembles and their applications in random matrix theory. J Math Phys, 2017, 58: 103301

[13]

Pirjol D, Zhu L. On the growth rate of a linear stochastic recursion with Markovian dependence. J Stat Phys, 2015, 160: 1354–1388

[14]

Pirjol D, Zhu L. Asymptotics for the Euler-discretized Hull-White stochastic volatility model. Methodol Comput Appl Probab, 2017, 2: 1–43

[15]

Renlund H. Limit theorems for stochastic approximation algorithms. arXiv: 1102.4741

[16]

Revuz D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer-Verlag, 1999

[17]

Talay D, Tubaro L. Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch Anal Appl, 1990, 8(4): 483–509

[18]

Varadhan S R S. Large Deviations and Applications. Philadelphia: SIAM, 1984

[19]

Wang S. Moderate deviations for a class of recursions. Statist Probab Lett, 2013, 83: 2348–2352

[20]

Zhang X. Euler-Maruyama approximations for SDEs with non-Lipschitz coecients and applications. J Math Anal Appl, 2006, 316(2): 447–458

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (438KB)

902

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/