Finite p-groups whose non-normal subgroups have few orders
Lijian AN
Finite p-groups whose non-normal subgroups have few orders
Suppose that G is a nite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use and to denote the maximum and minimum of the orders of the non-normal subgroups of G; respectively. In this paper, we classify groups G such that : As a by-product, we also classify p-groups whose orders of non-normal subgroups are and :
Finite p-groups / meta-hamiltonian p-groups / non-normal subgroups
[1] |
An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753
CrossRef
Google scholar
|
[2] |
An L, Zhang Q. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–35
CrossRef
Google scholar
|
[3] |
Berkovich Y. Groups of Prime Power Order, Vol. 1. Berlin: Walter de Gruyter, 2008
|
[4] |
Fang X, An L. The classication of nite metahamiltonian p-groups. arXiv.org: 1310.5509v2
|
[5] |
Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370
CrossRef
Google scholar
|
[6] |
Rédei L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören (German). Comment Math Helvet, 1947, 20: 225–264
|
[7] |
Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603–3620
CrossRef
Google scholar
|
[8] |
Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178
CrossRef
Google scholar
|
[9] |
Zhang Q, Li X, Su M. Finite p-groups whose nonnormal subgroups have orders at most p3: Front Math China, 2014, 9(5): 1169–1194
CrossRef
Google scholar
|
[10] |
Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23: Front Math China, 2012, 7(5): 971–1003
CrossRef
Google scholar
|
[11] |
Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p3 are abelian. Commun Math Stat, 2015, 3: 69–162
CrossRef
Google scholar
|
/
〈 | 〉 |