Finite p-groups whose non-normal subgroups have few orders

Lijian AN

Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 763 -777.

PDF (294KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 763 -777. DOI: 10.1007/s11464-018-0693-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite p-groups whose non-normal subgroups have few orders

Author information +
History +
PDF (294KB)

Abstract

Suppose that G is a nite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use pM(G) and pm(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G; respectively. In this paper, we classify groups G such that M(G)2m(G)1: As a by-product, we also classify p-groups whose orders of non-normal subgroups are pk and pk+1:

Keywords

Finite p-groups / meta-hamiltonian p-groups / non-normal subgroups

Cite this article

Download citation ▾
Lijian AN. Finite p-groups whose non-normal subgroups have few orders. Front. Math. China, 2018, 13(4): 763-777 DOI:10.1007/s11464-018-0693-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753

[2]

An L, Zhang Q. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–35

[3]

Berkovich Y. Groups of Prime Power Order, Vol. 1. Berlin: Walter de Gruyter, 2008

[4]

Fang X, An L. The classication of nite metahamiltonian p-groups. arXiv.org: 1310.5509v2

[5]

Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370

[6]

Rédei L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören (German). Comment Math Helvet, 1947, 20: 225–264

[7]

Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603–3620

[8]

Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178

[9]

Zhang Q, Li X, Su M. Finite p-groups whose nonnormal subgroups have orders at most p3: Front Math China, 2014, 9(5): 1169–1194

[10]

Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23: Front Math China, 2012, 7(5): 971–1003

[11]

Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p3 are abelian. Commun Math Stat, 2015, 3: 69–162

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (294KB)

858

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/