Finite p-groups whose non-normal subgroups have few orders

Lijian AN

PDF(294 KB)
PDF(294 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (4) : 763-777. DOI: 10.1007/s11464-018-0693-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite p-groups whose non-normal subgroups have few orders

Author information +
History +

Abstract

Suppose that G is a nite p-group. If G is not a Dedekind group, then G has a non-normal subgroup. We use pM(G) and pm(G) to denote the maximum and minimum of the orders of the non-normal subgroups of G; respectively. In this paper, we classify groups G such that M(G)2m(G)1: As a by-product, we also classify p-groups whose orders of non-normal subgroups are pk and pk+1:

Keywords

Finite p-groups / meta-hamiltonian p-groups / non-normal subgroups

Cite this article

Download citation ▾
Lijian AN. Finite p-groups whose non-normal subgroups have few orders. Front. Math. China, 2018, 13(4): 763‒777 https://doi.org/10.1007/s11464-018-0693-0

References

[1]
An L, Li L, Qu H, Zhang Q. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci China Math, 2014, 57: 737–753
CrossRef Google scholar
[2]
An L, Zhang Q. Finite metahamiltonian p-groups. J Algebra, 2015, 442: 23–35
CrossRef Google scholar
[3]
Berkovich Y. Groups of Prime Power Order, Vol. 1. Berlin: Walter de Gruyter, 2008
[4]
Fang X, An L. The classication of nite metahamiltonian p-groups. arXiv.org: 1310.5509v2
[5]
Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352–370
CrossRef Google scholar
[6]
Rédei L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören (German). Comment Math Helvet, 1947, 20: 225–264
[7]
Xu M, An L, Zhang Q. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J Algebra, 2008, 319: 3603–3620
CrossRef Google scholar
[8]
Zhang Q, Guo X, Qu H, Xu M. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165–1178
CrossRef Google scholar
[9]
Zhang Q, Li X, Su M. Finite p-groups whose nonnormal subgroups have orders at most p3: Front Math China, 2014, 9(5): 1169–1194
CrossRef Google scholar
[10]
Zhang Q, Su M. Finite 2-groups whose nonnormal subgroups have orders at most 23: Front Math China, 2012, 7(5): 971–1003
CrossRef Google scholar
[11]
Zhang Q, Zhao L, Li M, Shen Y. Finite p-groups all of whose subgroups of index p3 are abelian. Commun Math Stat, 2015, 3: 69–162
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(294 KB)

Accesses

Citations

Detail

Sections
Recommended

/