Error bounds of Lanczos approach for trust-region subproblem

Leihong ZHANG, Weihong YANG, Chungen SHEN, Jiang FENG

PDF(250 KB)
PDF(250 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 459-481. DOI: 10.1007/s11464-018-0687-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Error bounds of Lanczos approach for trust-region subproblem

Author information +
History +

Abstract

Because of its vital role of the trust-region subproblem (TRS) in various applications, for example, in optimization and in ill-posed problems, there are several factorization-free algorithms for solving the large-scale sparse TRS. The truncated Lanczos approach proposed by N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint [SIAM J. Optim., 1999, 9: 504–525] is a natural extension of the classical Lanczos method for the symmetric linear system and eigenvalue problem and, indeed follows the classical Rayleigh-Ritz procedure for eigenvalue computations. It consists of 1) projecting the original TRS to the Krylov subspaces to yield smaller size TRS’s and then 2) solving the resulted TRS’s to get the approximates of the original TRS. This paper presents a posterior error bounds for both the global optimal value and the optimal solution between the original TRS and their projected counterparts. Our error bounds mainly rely on the factors from the Lanczos process as well as the data of the original TRS and, could be helpful in designing certain stopping criteria for the truncated Lanczos approach.

Keywords

Trust-region method / trust-region subproblem (TRS) / Lanczos method / Steihaug–Toint conjugate-gradient iteration / error bound

Cite this article

Download citation ▾
Leihong ZHANG, Weihong YANG, Chungen SHEN, Jiang FENG. Error bounds of Lanczos approach for trust-region subproblem. Front. Math. China, 2018, 13(2): 459‒481 https://doi.org/10.1007/s11464-018-0687-y

References

[1]
Conn A R, Gould N I M, Toint P L. Trust-Region Methods. Philadelphia: SIAM, 2000
CrossRef Google scholar
[2]
Demmel J. Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997
CrossRef Google scholar
[3]
Gay D M. Computing optimal locally constrained steps. SIAM J Sci Statist Comput, 1981, 2: 186–197
CrossRef Google scholar
[4]
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996
[5]
Golub G H, von Matt U. Quadratically constrained least squares and quadratic problems. Numer Math, 1991, 59: 561–580
CrossRef Google scholar
[6]
Gould N I M, Lucidi S, Roma M, Toint P L. Solving the trust-region subproblem using the Lanczos method. SIAM J Optim, 1999, 9: 504–525
CrossRef Google scholar
[7]
Hager W W. Minimizing a quadratic over a sphere. SIAM J Optim, 2001, 12: 188–208
CrossRef Google scholar
[8]
Hager W W, Krylyuk Y. Graph partitioning and continuous quadratic programming. SIAM J Discrete Math, 1999, 12(4): 500–523
CrossRef Google scholar
[9]
Li C K, Li R C. A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra Appl, 2005, 395: 183–190
CrossRef Google scholar
[10]
Li R C. On Meinardus’ examples for the conjugate gradient method. Math Comp, 2008, 77(261): 335–352
CrossRef Google scholar
[11]
Li R C. Sharpness in rates of convergence for symmetric Lanczos method. Math Comp, 2010, 79(269): 419–435
CrossRef Google scholar
[12]
Li R C, Zhang L H. Convergence of block Lanczos method for eigenvalue clusters. Numer Math, 2015, 131: 83–113
CrossRef Google scholar
[13]
Luk˘san L, Matonoha C, Vl˘cek J. On Lagrange multipliers of trust-region subproblems. BIT, 2008, 48: 763–768
CrossRef Google scholar
[14]
Moŕe J, Sorensen D C. Computing a trust region step. SIAM J Sci Statist Comput, 1983, 4(3): 553–572
CrossRef Google scholar
[15]
Nocedal J, Wright S. Numerical Optimization. 2nd ed. Berlin: Springer, 2006
[16]
Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998
CrossRef Google scholar
[17]
Rendl R, Wolkowicz H. A semidefinite framework for trust region subproblems with applications to large scale minimization. Math Program, 1997, 77(2): 273–299
CrossRef Google scholar
[18]
Rojas M, Santos S A, Sorensen D C. Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans Math Software, 2008, 34(2): 1–28
CrossRef Google scholar
[19]
Rojas M, Santos S A, Sorensen D C. A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J Optim, 2000, 11: 611–646
CrossRef Google scholar
[20]
Rojas M, Sorensen D C. A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems. SIAM J Sci Comput, 2002, 23: 1843–1861
CrossRef Google scholar
[21]
Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: SIAM, 2003
CrossRef Google scholar
[22]
Sorensen D C. Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J Optim, 1997, 7: 141–161
CrossRef Google scholar
[23]
Steihaug T. The conjugate gradient method and trust regions in large scale optimization. SIAM J Numer Anal, 1983, 20: 626–637
CrossRef Google scholar
[24]
Tarantola A. Inverse Problem Theory. Amsterdam: Elsevier, 1987
[25]
Tikhonov A N. Regularization of incorrectly posed problems. Soviet Math, 1963, 4: 1624–1627
[26]
Toint P L. Towards an efficient sparsity exploiting Newton method for minimization. In: Duff I, ed. Sparse Matrices and Their Uses. London: Academic Press, 1981, 57–88
[27]
Zhang L H, Shen C G, Li R C. On the generalized Lanczos trust-region method. SIAM J Optim, 2017, 27(3): 2110–2142
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(250 KB)

Accesses

Citations

Detail

Sections
Recommended

/