Sharp weak bounds for n-dimensional fractional Hardy operators

Haixia YU, Junfeng LI

PDF(135 KB)
PDF(135 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 449-457. DOI: 10.1007/s11464-018-0685-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp weak bounds for n-dimensional fractional Hardy operators

Author information +
History +

Abstract

We obtain the operator norms of the n-dimensional fractional Hardy operator Hα(0αN) from weighted Lebesgue spaces L|x|pp(n) to weighted weak Lebesgue spaces L|x|βq,(n).

Keywords

Sharp weak bound / fractional Hardy operator / Lebesgue space with power weight

Cite this article

Download citation ▾
Haixia YU, Junfeng LI. Sharp weak bounds for n-dimensional fractional Hardy operators. Front. Math. China, 2018, 13(2): 449‒457 https://doi.org/10.1007/s11464-018-0685-0

References

[1]
Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46
CrossRef Google scholar
[2]
Boyd D W. Inequalities for positive integral operators. Pacific J Math, 1971, 38: 9–24
CrossRef Google scholar
[3]
Chen J, Fan D, Lin X, Ruan J. The fractional Hausdorff operators on the Hardy spaces Hp(Rn). Anal Math, 2016, 42(1): 1–17
CrossRef Google scholar
[4]
Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123(6): 1687–1693
CrossRef Google scholar
[5]
Faris W G. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43(2): 365–373
CrossRef Google scholar
[6]
Fu Z, Grafakos L, Lu S, Zhao F. Sharp bounds for m-linear Hardy and Hilbert operators. Houston J Math, 2012, 38(1): 225–244
[7]
Fu Z, Liu Z, Lu S, Wang H. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426
CrossRef Google scholar
[8]
Gao G, Hu X, Zhang C. Sharp weak estimates for Hardy-type operators. Ann Funct Anal, 2016, 7(3): 421–433
CrossRef Google scholar
[9]
Gao G, Zhao F. Sharp weak bounds for Hausdorff operators. Anal Math, 2015, 41(3): 163–173
CrossRef Google scholar
[10]
Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6(3-4): 314–317
CrossRef Google scholar
[11]
Lu S. Some recent progress of n-dimensional Hardy operators. Adv Math (China), 2013, 42(6): 737–747
[12]
Lu S, Yan D, Zhao F. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(148): 11pp
[13]
Mizuta Y, Nekvinda A, Shimomura T. Optimal estimates for the fractional Hardy operator. Studia Math, 2015, 227(1): 1–19
CrossRef Google scholar
[14]
Yu H, Long S. Endpoint estimates for n-dimensional fractional Hardy operators and its dual form. Journal of Xiangtan University (Natural Sciences). 2015, 37(2): 10–15
[15]
Zhao F, Fu Z, Lu S. Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci China Math, 2012 55(10): 1977–1990
CrossRef Google scholar
[16]
Zhao F, Lu S. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015 18(1): 233–240
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/