Sharp weak bounds for n-dimensional fractional Hardy operators

Haixia YU , Junfeng LI

Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 449 -457.

PDF (134KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 449 -457. DOI: 10.1007/s11464-018-0685-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Sharp weak bounds for n-dimensional fractional Hardy operators

Author information +
History +
PDF (134KB)

Abstract

We obtain the operator norms of the n-dimensional fractional Hardy operator Hα(0αN) from weighted Lebesgue spaces L|x|pp(n) to weighted weak Lebesgue spaces L|x|βq,(n).

Keywords

Sharp weak bound / fractional Hardy operator / Lebesgue space with power weight

Cite this article

Download citation ▾
Haixia YU, Junfeng LI. Sharp weak bounds for n-dimensional fractional Hardy operators. Front. Math. China, 2018, 13(2): 449-457 DOI:10.1007/s11464-018-0685-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46

[2]

Boyd D W. Inequalities for positive integral operators. Pacific J Math, 1971, 38: 9–24

[3]

Chen J, Fan D, Lin X, Ruan J. The fractional Hausdorff operators on the Hardy spaces Hp(Rn). Anal Math, 2016, 42(1): 1–17

[4]

Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123(6): 1687–1693

[5]

Faris W G. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43(2): 365–373

[6]

Fu Z, Grafakos L, Lu S, Zhao F. Sharp bounds for m-linear Hardy and Hilbert operators. Houston J Math, 2012, 38(1): 225–244

[7]

Fu Z, Liu Z, Lu S, Wang H. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426

[8]

Gao G, Hu X, Zhang C. Sharp weak estimates for Hardy-type operators. Ann Funct Anal, 2016, 7(3): 421–433

[9]

Gao G, Zhao F. Sharp weak bounds for Hausdorff operators. Anal Math, 2015, 41(3): 163–173

[10]

Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6(3-4): 314–317

[11]

Lu S. Some recent progress of n-dimensional Hardy operators. Adv Math (China), 2013, 42(6): 737–747

[12]

Lu S, Yan D, Zhao F. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(148): 11pp

[13]

Mizuta Y, Nekvinda A, Shimomura T. Optimal estimates for the fractional Hardy operator. Studia Math, 2015, 227(1): 1–19

[14]

Yu H, Long S. Endpoint estimates for n-dimensional fractional Hardy operators and its dual form. Journal of Xiangtan University (Natural Sciences). 2015, 37(2): 10–15

[15]

Zhao F, Fu Z, Lu S. Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci China Math, 2012 55(10): 1977–1990

[16]

Zhao F, Lu S. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015 18(1): 233–240

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (134KB)

943

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/