An isometrical CPn-theorem

Xiaole SU , Hongwei SUN , Yusheng WANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 367 -398.

PDF (357KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 367 -398. DOI: 10.1007/s11464-018-0684-1
RESEARCH ARTICLE
RESEARCH ARTICLE

An isometrical CPn-theorem

Author information +
History +
PDF (357KB)

Abstract

Let Mn(n3) be a complete Riemannian manifold with secM1, and let Mini(i=1,2) be two complete totally geodesic submanifolds in M. We prove that if n1 + n2 = n − 2 and if the distance |M1M2|π/2, then Mi is isometric to Sni/h,Pni/2/2, or Pni/2/2 with the canonical metric when ni>0, and thus, M is isometric to Sn/h,Pn/2, or Pn/2/2 except possibly when n = 3 and M1 (or M2) isoS1/h with h2 or n = 4 and M1 (or M2) isoP2.

Keywords

Rigidity / positive sectional curvature / totally geodesic submanifolds

Cite this article

Download citation ▾
Xiaole SU, Hongwei SUN, Yusheng WANG. An isometrical CPn-theorem. Front. Math. China, 2018, 13(2): 367-398 DOI:10.1007/s11464-018-0684-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besse A L. Manifolds all of whose Geodesics are Closed. Ergeb Math Grenzgeb, Vol 93. Berlin: Springer, 1978

[2]

Burago Y, Gromov M, Perel' man G. A. D. Alexandrov spaces with curvature bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51

[3]

Cheeger J, Ebin D G. Comparison Theorems in Riemannian Geometry. North-Holland Math Library, Vol 9. Amsterdam: North-Holland Publishing Company, 1975

[4]

Frankel T. Manifolds of positive curvature. Pacific J Math, 1961, 11: 165–174

[5]

Gromoll D, Grove K. A generalization of Berger’s rigidity theorem for positively curved manifolds. Ann Sci Éc Norm Supér, 1987, 20(2): 227–239

[6]

Gromoll D, Grove K. The low-dimensional metric foliations of Euclidean spheres. J Differential Geom, 1988, 28: 143–156

[7]

Grove K, Markvorsen S. New extremal problems for the Riemannian recognition program via Alexandrov geometry. J Amer Math Soc, 1995, 8(1): 1–28

[8]

Grove K, Shiohama K. A generalized sphere theorem. Ann of Math, 1977, 106: 201–211

[9]

Peterson P. Riemannian Geometry. Grad Texts in Math, Vol 171. Berlin: Springer-Verlag, 1998

[10]

Rong X C, Wang Y S. Finite quotient of join in Alexandrov geometry. ArXiv: 1609.07747v1

[11]

Sady R H.Free involutions on complex projective spaces. Michigan Math J, 1977, 24: 51–64

[12]

Su X L, Sun H W, Wang Y S. Generalized packing radius theorems of Alexandrov spaces with curvature≥1. Commun Contemp Math, 2017, 19(3): 1650049 (18 pp)

[13]

Sun Z Y, Wang Y S. On the radius of locally convex subsets in Alexandrov spaces with curvature≥1 and radius>π/2. Front Math China, 2014, 9(2): 417–423

[14]

Wilhelm F. The radius rigidity theorem for manifolds of positive curvature. J Differential Geom, 1996, 44: 634–665

[15]

Wilking B. Index parity of closed geodesics and rigidity of Hopf fibrations. Invent Math, 2001, 144: 281–295

[16]

Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191: 259–297

[17]

Yamaguchi T. Collapsing 4-manifolds under a lower curvature bound. arXiv: 1205.0323

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (357KB)

665

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/