Lagrangian Grassmann manifold Λ(2)

Lei LIU

PDF(787 KB)
PDF(787 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 341-365. DOI: 10.1007/s11464-018-0683-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Lagrangian Grassmann manifold Λ(2)

Author information +
History +

Abstract

Based on the relationship between symplectic group Sp(2) and Λ(2), we provide an intuitive explanation (model) of the 3-dimensional Lagrangian Grassmann manifold Λ(2), the singular cycles of Λ(2), and the special Lagrangian Grassmann manifold SΛ(2). Under this model, we give a formula of the rotation paths defined by Arnold.

Keywords

Lagrangian Grassmann manifold / Lagrangian plane / geometric representation / singular cycle

Cite this article

Download citation ▾
Lei LIU. Lagrangian Grassmann manifold Λ(2). Front. Math. China, 2018, 13(2): 341‒365 https://doi.org/10.1007/s11464-018-0683-2

References

[1]
Arnold V I. Characteristic class entering in quantization conditions. Funct Anal Appl, 1967, 1(1): 1–13
CrossRef Google scholar
[2]
Cappel S, Lee R, Miller E. On the Maslov index. Comm Pure Appl Math, 1994, 47: 121–186
CrossRef Google scholar
[3]
Gelfand I M, V.B. Lidskii V B. On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Uspekhi Mat Nauk, 1955, 10: 3–40 (in Russian); Amer Math Soc Transl, 1958, 8(2): 143–181
[4]
Long Y. The structure of the singular symplectic matrix set. Sci China Ser A, 1991, 34: 897–907
[5]
Long Y.Index Theory for Symplectic Paths with Applications. Progr Math, Vol 207. Basel: Birkhäuser, 2002
CrossRef Google scholar
[6]
Long Y, Zehnder E. Morse theory for forced oscillations of asymptotically linear Hamiltonian systems. In: Albeverio S, ed. Stoc Proc Phys and Geom. Singapore: World Scientific, 1990, 528–563
[7]
Maslov V P. Theory of Pertubations and Asymptotic Methods. Moscow: Moskov Gos Univ, 1965 (in Russian)
[8]
Maslov V P, Fedoriuk M V. Semi-Classical Approximation in Quantum Mechanics. Mathematical Physics and Applied Mathematics, Vol 7. Dordrecht: D Reidel Publ Company, 1981
[9]
Robbin J, Salamon D. The Maslov index for paths. Topology, 1993, 32: 827–844
CrossRef Google scholar
[10]
Salamon D, E. Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm Pure Appl Math, 1992, 45: 1303–1360
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(787 KB)

Accesses

Citations

Detail

Sections
Recommended

/