Double Frobenius algebras

Zhihua WANG , Libin LI

Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 399 -415.

PDF (182KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (2) : 399 -415. DOI: 10.1007/s11464-018-0682-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Double Frobenius algebras

Author information +
History +
PDF (182KB)

Abstract

Some equivalent conditions for double Frobenius algebras to be strict ones are given. Then some examples of (strict or non-strict) double Frobenius algebras are presented. Finally, a sufficient and necessary condition for the trivial extension of a double Frobenius algebra to be a (strict) double Frobenius algebra is given.

Keywords

Double Frobenius algebra / bi-Frobenius algebra / trivial extension

Cite this article

Download citation ▾
Zhihua WANG, Libin LI. Double Frobenius algebras. Front. Math. China, 2018, 13(2): 399-415 DOI:10.1007/s11464-018-0682-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abrams L. Modules, comodules and cotensor products over Frobenius algebras. J Algebra, 1999, 219: 201–213

[2]

Chen Q G, Wang S H. Radford’s formula for generalized weak biFrobenius algebras. Rocky Mountain J Math, 2014, 44(2): 419–433

[3]

Doi Y. Substructures of bi-Frobenius algebras. J Algebra, 2002, 256: 568–582

[4]

Doi Y. Group-like algebras and their representations. Comm Algebra, 2010, 38(7): 2635–2655

[5]

Doi Y, Takeuchi M. BiFrobenius algebras. Contemp Math, 2000, 267: 67–98

[6]

Etingof P, Gelaki S, Nikshych D, Ostrik V. Tensor Categories. Math Surveys Monogr, Vol 205. Providence: AMS, 2015

[7]

Ferrer Santos W, Haim M. Radford’s formula for bi-Frobenius algebras and applications. Comm Algebra, 2008, 36(4): 1301–1310

[8]

Haim M. Group-like algebras and Hadamard matrices. J Algebra, 2007, 308: 215–235

[9]

Koppinen M. On algebras with two multiplications, including Hopf algebras and Bose-Mesner algebras. J Algebra, 1996, 182: 256–273

[10]

Lam T Y. Lectures on Modules and Rings. Grad Texts in Math, Vol 189. New York: Springer-Verlag, 1999

[11]

Lorenz M. Some applications of Frobenius algebras to Hopf algebras. Contemp Math, 2011, 537: 269–289

[12]

Wang Y H, Chen X W. Construct non-graded bi-Frobenius algebras via quivers. Sci China Ser A, 2007, 50(3): 450–456

[13]

Wang Y H, Zhang P. Construct bi-Frobenius algebras via quivers. Tsukuba J Math, 2004, 28(1): 215–227

[14]

Wang Z H, Li L B. On realization of fusion rings from generalized Cartan matrices. Acta Math Sin (Engl Ser), 2017, 33(3): 362–376

[15]

Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of nilpotent type. Algebr Represent Theory, 2014, 17(6): 1901–1924

[16]

Wang Z H, Li L B, Zhang Y H. Green rings of pointed rank one Hopf algebras of non-nilpotent type. J Algebra, 2016, 449: 108–137

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (182KB)

705

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/