Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces
Nguyen Minh CHUONG, Nguyen Thi HONG, Ha Duy HUNG
Bounds of weighted multilinear Hardy-Cesàro operators in p-adic functional spaces
We introduce the p-adic weighted multilinear Hardy-Cesàro operator. We also obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of Lebesgue spaces, Morrey spaces, and central bounded mean oscillation spaces. In each case, we obtain the corresponding operator norms. We also characterize the good weights for the boundedness of the commutator of weighted multilinear Hardy-Cesàro operator on the product of central Morrey spaces with symbols in central bounded mean oscillation spaces.
Weighted multilinear Hardy-Cesàro operator / bounded mean oscillation (BMO) / commutator / p-adic analysis
[1] |
Albeverio S, Khrennikov A Yu, Shelkovich V M. Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems. J Fourier Anal Appl, 2006, 12: 393–425
CrossRef
Google scholar
|
[2] |
Alvarez J, Lakey J, Guzmán-Partida M. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1–47
|
[3] |
Chen Y Z, Lau K S, Some new classes of Hardy spaces. J Funct Anal, 1989, 84: 255–278
CrossRef
Google scholar
|
[4] |
Chuong N M, Egorov Yu V, Khrennikov A, Meyer Y, Mumford D. Harmonic, Wavelet and p-Adic Analysis.Singapore: World Scientific, 2007
CrossRef
Google scholar
|
[5] |
Chuong N M, Hong N T, Hung H D. Bounds of p-adic Hardy-Cesàro operators and their commutators on p-adic weighted spaces of Morrey types. P-Adic Numbers Ultrametric Anal Appl, 2016, 8: 31–44
CrossRef
Google scholar
|
[6] |
Chuong N M, Hong N T, Hung H D. Multilinear Hardy-Cesàro operator and commutator on the product of Morrey-Herz spaces. Anal Math (to appear)
CrossRef
Google scholar
|
[7] |
Chuong N M, Hung H D. Maximal functions and weighted norm inequalities on Local Fields. Appl Comput Harmon Anal, 2010, 29: 272–286
CrossRef
Google scholar
|
[8] |
Chuong N M, Hung H D. A Muckenhoupt’s weight problem and vector valued maximal inequalities over local fields. P-Adic Numbers Ultrametric Anal Appl, 2010, 2: 305–321
CrossRef
Google scholar
|
[9] |
Chuong N M, Hung H D. Bounds of weighted Hardy-Cesàro operators on weighted Lebesgue and BMO spaces. Integral Transforms Spec Funct, 2014, 25(9): 697–710
CrossRef
Google scholar
|
[10] |
Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math (2), 1976, 103: 611–635
|
[11] |
Fu Z W, Gong S L, Lu S Z, Yuan W. Weighted multilinear Hardy operators and commutators. Forum Math. 2014, DOI: https://doi.org/10.1515/forum-2013-0064
CrossRef
Google scholar
|
[12] |
Fu Z W, Liu Z G, Lu S Z. Commutators of weighted Hardy operators on Rn.Proc Amer Math Soc, 2009, 137(10): 3319–3328
CrossRef
Google scholar
|
[13] |
Hung H D. p-Adic weighted Hardy-Cesàro operator and an application to discrete Hardy inequalities. J Math Anal Appl, 2014, 409: 868–879
CrossRef
Google scholar
|
[14] |
Hung H D, Ky L D. New weighted multilinear operators and commutators of Hardy-Cesàro type. Acta Math Sci Ser B Engl Ed, 2015, 35: 1411–1425
CrossRef
Google scholar
|
[15] |
Igusa J. Introduction to the Theory of Local Zeta Functions. Stud Adv Math, Vol 14. Boca Raton: Chapman & Hall/CRC, 2000
|
[16] |
Khrennikov A Yu. p-Adic Valued Distributions in Mathematical Physics.Dordrecht-Boston-London: Kluwer Academic Publishers, 1994
|
[17] |
Khrennikov A Yu. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems, and Biological Models.Dordretch/Boston/London: Kluwer Academic Publishers, 1997
CrossRef
Google scholar
|
[18] |
Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282(2): 219–231
CrossRef
Google scholar
|
[19] |
Kozyrev S V. Wavelet analysis as a p-adic spectral analysis. Izv Ross Akad Nauk Ser Mat, 2002, 66(2): 149–158
|
[20] |
Kozyrev S V, Khrennikov A Yu. Pseudodifferential operators on ultrametric spaces and ultrametric wavelets. Izv Ross Akad Nauk Ser Mat, 2005, 69(5): 133–148
CrossRef
Google scholar
|
[21] |
Lu S Z, Yang D C. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 1995, 11: 72–94
|
[22] |
Rim K S, Lee J. Estimates of weighted Hardy-Littlewood averages on the p-adic vector space. J Math Anal Appl, 2006, 324: 1470–1477
CrossRef
Google scholar
|
[23] |
Taibleson M. Fourier Analysis on Local Fields.Princeton: Princeton Univ Press, 1975
|
[24] |
Vladimirov V S, Volovich I V, Zelenov E I. p-Adic Analysis and Mathematical Physics.Singapore: World Scientific, 1994
|
[25] |
Volosivets S S. Hausdorff operator of special kind on p-adic field and BMO-type spaces. P-Adic Numbers Ultrametric Anal Appl, 2011, 3: 149–156
CrossRef
Google scholar
|
[26] |
Volosivets S S. Hausdorff operator of special kind in Morrey and Herz p-adic spaces. P-Adic Numbers Ultrametric Anal Appl, 2012, 4: 222–230
CrossRef
Google scholar
|
[27] |
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40: 635–654
CrossRef
Google scholar
|
[28] |
Wu Q Y, Mi L, Fu Z W. Boundedness for commutators of fractional p-adic Hardy operators. J Inequal Appl, 2012, 2012: 293
|
[29] |
Wu Q Y, Mi L, Fu Z W. Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J Funct Spaces Appl, 2013, 2013: 359193
|
/
〈 | 〉 |