MX=M=c Queue with catastrophes and state-dependent control at idle time

Junping LI, Lina ZHANG

PDF(276 KB)
PDF(276 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1427-1439. DOI: 10.1007/s11464-017-0674-8
RESEARCH ARTICLE
RESEARCH ARTICLE

MX=M=c Queue with catastrophes and state-dependent control at idle time

Author information +
History +

Abstract

We consider an MX=M=c queue with catastrophes and state-dependent control at idle time. Properties of the queues which terminate when the servers become idle are first studied. Recurrence, equilibrium distribution, and equilibrium queue-size structure are studied for the case of resurrection and no catastrophes. All of these properties and the first effective catastrophe occurrence time are then investigated for the case of resurrection and catastrophes. In particular, we obtain the Laplace transform of the transition probability for the absorbing MX=M=c queue.

Keywords

Markovian bulk-arriving queues / equilibrium distribution / queue size / recurrence / effective catastrophe

Cite this article

Download citation ▾
Junping LI, Lina ZHANG. MX=M=c Queue with catastrophes and state-dependent control at idle time. Front. Math. China, 2017, 12(6): 1427‒1439 https://doi.org/10.1007/s11464-017-0674-8

References

[1]
AndersonW. Continuous-Time Markov Chains: An Applications-Oriented Approach.New York: Springer-Verlag, 1991
CrossRef Google scholar
[2]
ArtalejoJ. G-networks: a versatile approach for work removal in queueing networks.Eur J Oper Res, 2000, 126: 233–249
CrossRef Google scholar
[3]
AsmussenS. Applied Probability and Queues.2nd ed. New York: John Wiley, 2003
[4]
BayerN, BoxmaO J. Wiener-Hopf analysis of an M=G=1 queue with negative customers and of a related class of random walks.Queueing Syst, 1996, 23: 301–316
CrossRef Google scholar
[5]
ChenA Y, PollettP, LiJ P, ZhangH J. Markovian bulk-arrival and bulk-service queues with state-dependent control.Queueing Syst, 2010, 64: 267–304
CrossRef Google scholar
[6]
ChenA Y, RenshawE. Markov branching processes with instantaneous immigration.Probab Theory Related Fields, 1990, 87: 209–240
CrossRef Google scholar
[7]
ChenA Y, RenshawE. The M/M/1 queue with mass exodus and mass arrives when empty.J Appl Probab, 1997, 34: 192–207
CrossRef Google scholar
[8]
ChenA Y, RenshawE. Markov bulk-arriving queues with state-dependent control at idle time.Adv Appl Probab, 2004, 36: 499–524
CrossRef Google scholar
[9]
ChenM F. From Markov Chains to Non-Equilibrium Particle Systems.Singapore: World Scientific, 1992
CrossRef Google scholar
[10]
ChenM F. Eigenvalues, Inequalities, and Ergodic Theory.London: Springer-Verlag, 2004
[11]
Di CrescenzoA, GiornoV, NobileA G, RicciardiL M. A note on birth-death processes with catastrophes.Statist Probab Lett, 2008, 78: 2248–2257
CrossRef Google scholar
[12]
DudinA N, KarolikA V. BMAP/SM/1 queue with Markovian input of disasters and non-instantaneous recovery.Performance Evaluation, 2001, 45: 19–32
CrossRef Google scholar
[13]
DudinS A, LeeM H. Analysis of single-server queue with phase-type service and energy harvesting.Math Probl Eng, 2016, Article ID: 8142743
[14]
GelenbeE. Product-form queueing networks with negative and positive customers.J Appl Probab, 1991, 28: 656–663
CrossRef Google scholar
[15]
GelenbeE, GlynnP, SigmanK. Queues with negative arrivals.J Appl Probab, 1991, 28: 245–250
CrossRef Google scholar
[16]
GrossD, HarrisC M. Fundamentals of Queueing Theory.New York: John Wiley, 1985
[17]
JainG, SigmanK. A Pollaczek-Khintchine formula for M/G/1 queues with disasters.J Appl Probab, 1996, 33: 1191–1200
[18]
PakesA G. Killing and resurrection of Markov processes.Commun Statist –Stochastic Models, 1997, 13: 255–269
CrossRef Google scholar
[19]
ParthasarathyP R, Krishna KumarB. Density-dependent birth and death processes with state-dependent immigration.Math Comput Modelling, 1991, 15: 11–16
CrossRef Google scholar
[20]
ZeifmanA, KorolevV, SatinY, KorotyshevaA, BeningV. Perturbation bounds and truncations for a class of Markovian queues.Queueing Syst, 2014, 76: 205–221
CrossRef Google scholar
[21]
ZeifmanA, KorotyshevaA. Perturbation bounds for Mt=Mt=N queue with catastrophes.Stoch Models,2012, 28: 49–62
CrossRef Google scholar
[22]
ZeifmanA, KorotyshevaA, SatinY, KorolevV, ShorginS, RazumchikR. Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to the origin.Int J Appl Math Comput Sci, 2015, 25: 787–802
CrossRef Google scholar
[23]
ZhangL N, LiJ P. The M=M=c queue with mass exodus and mass arrivals when empty.J Appl Probab, 2015, 52: 990–1002
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(276 KB)

Accesses

Citations

Detail

Sections
Recommended

/