Algebraic K-theory of Gorenstein projective modules

Ruixin LI , Miantao LIU , Nan GAO

Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 55 -66.

PDF (160KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 55 -66. DOI: 10.1007/s11464-017-0673-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Algebraic K-theory of Gorenstein projective modules

Author information +
History +
PDF (160KB)

Abstract

We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the ‘resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different algebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.

Keywords

Frobenius pair / Gorenstein projective module / Gorenstein algebraic K-group / idempotent complete category / recollement

Cite this article

Download citation ▾
Ruixin LI, Miantao LIU, Nan GAO. Algebraic K-theory of Gorenstein projective modules. Front. Math. China, 2018, 13(1): 55-66 DOI:10.1007/s11464-017-0673-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969

[2]

Balmer P, Schlichting M. Idempotent completion of triangulated categories. J Algebra, 2001, 236: 819–834

[3]

Bao Y H, Du X N, Zhao Z B. Gorenstein singularity categories. J Algebra, 2015, 428: 122–137

[4]

Beligiannis A. On algebras of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973–2019

[5]

Chen H X, Xi C C. Recollements of derived categories II: Algebraic K-theory. 2014, ArXiv: 1212.1879

[6]

Chen H X, Xi C C. Higher algebraic K-theory of ring epimorphisms. Algebr Represent Theory, 2016, 19: 1347–1367

[7]

Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter De Gruyter, 2000

[8]

Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323: 2041–2057

[9]

Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Notes Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988

[10]

Hügel L A, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66

[11]

Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67(4): 379–417

[12]

Keller B. Derived categories and their uses. In: Hazewinkel M, ed. Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671–701

[13]

Quillen D. Higher algebraic K-theory I. In: Bass H, ed. Algebraic K-Theories. Proceedings of the Conference held at the Seattle Research Center of Battelle Memorial Institute, from August 28 to September 8, 1972. Lecture Notes in Math, Vol 341. Berlin: Springer, 1973, 85–147

[14]

Schlichting M. Negative K-theory of derived categories. Math Z, 2006, 253: 97–134

[15]

Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: Cartier P, Illusie L, Katz N M, Laumon G, Manin Y, Ribet K A, eds. The Grothendieck Festschrift, Vol III. Progr Mathematics, Vol 88. Boston: Birkhäuser, 1990, 247–435

[16]

Waldhausen F. Algebraic K-theory of spaces. In: Ranicki A, Levitt N, Quinn F, eds. Algebraic and Geometric Topology. Lecture Notes in Math, Vol 1126.Berlin: Springer, 1983, 318–419

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (160KB)

926

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/