Algebraic K-theory of Gorenstein projective modules
Ruixin LI, Miantao LIU, Nan GAO
Algebraic K-theory of Gorenstein projective modules
We introduce the Gorenstein algebraic K-theory space and the Gorenstein algebraic K-group of a ring, and show the relation with the classical algebraic K-theory space, and also show the ‘resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic K-groups by two different algebraic K-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic K-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.
Frobenius pair / Gorenstein projective module / Gorenstein algebraic K-group / idempotent complete category / recollement
[1] |
Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969
|
[2] |
Balmer P, Schlichting M. Idempotent completion of triangulated categories. J Algebra, 2001, 236: 819–834
CrossRef
Google scholar
|
[3] |
Bao Y H, Du X N, Zhao Z B. Gorenstein singularity categories. J Algebra, 2015, 428: 122–137
CrossRef
Google scholar
|
[4] |
Beligiannis A. On algebras of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973–2019
CrossRef
Google scholar
|
[5] |
Chen H X, Xi C C. Recollements of derived categories II: Algebraic K-theory. 2014, ArXiv: 1212.1879
|
[6] |
Chen H X, Xi C C. Higher algebraic K-theory of ring epimorphisms. Algebr Represent Theory, 2016, 19: 1347–1367
CrossRef
Google scholar
|
[7] |
Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter De Gruyter, 2000
CrossRef
Google scholar
|
[8] |
Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323: 2041–2057
CrossRef
Google scholar
|
[9] |
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Notes Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
|
[10] |
Hügel L A, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15–66
CrossRef
Google scholar
|
[11] |
Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67(4): 379–417
CrossRef
Google scholar
|
[12] |
Keller B. Derived categories and their uses. In: Hazewinkel M, ed. Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671–701
CrossRef
Google scholar
|
[13] |
Quillen D. Higher algebraic K-theory I. In: Bass H, ed. Algebraic K-Theories. Proceedings of the Conference held at the Seattle Research Center of Battelle Memorial Institute, from August 28 to September 8, 1972. Lecture Notes in Math, Vol 341. Berlin: Springer, 1973, 85–147
CrossRef
Google scholar
|
[14] |
Schlichting M. Negative K-theory of derived categories. Math Z, 2006, 253: 97–134
CrossRef
Google scholar
|
[15] |
Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: Cartier P, Illusie L, Katz N M, Laumon G, Manin Y, Ribet K A, eds. The Grothendieck Festschrift, Vol III. Progr Mathematics, Vol 88. Boston: Birkhäuser, 1990, 247–435
CrossRef
Google scholar
|
[16] |
Waldhausen F. Algebraic K-theory of spaces. In: Ranicki A, Levitt N, Quinn F, eds. Algebraic and Geometric Topology. Lecture Notes in Math, Vol 1126.Berlin: Springer, 1983, 318–419
CrossRef
Google scholar
|
/
〈 | 〉 |