Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential

Xindong XU

PDF(272 KB)
PDF(272 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 227-254. DOI: 10.1007/s11464-017-0667-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential

Author information +
History +

Abstract

We consider Hamiltonian partial differential equations utt +|x|u+ σu = f(u), xT, t, with periodic boundary conditions, where f(u) is a real-analytic function of the form f(u) = u5 + o(u5) near u = 0, σ ∈ (0, 1) is a fixed constant, and T=/2πZT= R/2πZ. A family of quasi-periodic solutions with 2-dimensional are constructed for the equation above with σ ∈ (0, 1)\ . The proof is based on infinite-dimensional KAM theory and partial Birkhoff normal form.

Keywords

Dense frequency / quasi-periodic solution / Birkhoff normal form

Cite this article

Download citation ▾
Xindong XU. Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential. Front. Math. China, 2018, 13(1): 227‒254 https://doi.org/10.1007/s11464-017-0667-7

References

[1]
Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 1999, 12: 823–850
CrossRef Google scholar
[2]
Chierchia L, You J. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys, 2000, 211: 498–525
CrossRef Google scholar
[3]
Craig W, Worfolk P A. An integrable normal form for water waves in infinite depth. Phys D, 1995, 84: 513–531
CrossRef Google scholar
[4]
Craig W, Sulem C. Mapping properties of normal forms transformations for water waves. Boll Unione Mat Ital, 2016, 9(2): 289–318
CrossRef Google scholar
[5]
Eliasson L H, Grébert B, Kuksin S B. KAM for the nonlinear beam equation. Geom Funct Anal, 2016, 26: 1588–1715
CrossRef Google scholar
[6]
Geng J, Xu X, You J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math, 2011, 226: 5361–5402
CrossRef Google scholar
[7]
Geng J, You J. A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J Differential Equations, 2005, 209: 1–56
CrossRef Google scholar
[8]
Geng J, You J. A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Comm Math Phys, 2006, 262: 343–372
CrossRef Google scholar
[9]
Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann Math, 1996, 143: 149–179
CrossRef Google scholar
[10]
Liang Z. Quasi-periodic solutions for 1D Schrödinger equation with the nonlinearity |u|2pu. J Differential Equations, 2008, 244: 2185–2225
CrossRef Google scholar
[11]
Liang Z, You J. Quasi-periodic solutions for 1D Schrödinger equation with higher nonlinearity. SIAM J Math Anal, 2005, 36(2): 1965–1990
CrossRef Google scholar
[12]
Pöschel J.Quasi-periodic solutions for a nonlinear wave equation. Comment Math Helv, 1996, 71:269–296
CrossRef Google scholar
[13]
Pöschel J. A KAM theorem for some nonlinear partial differential equations. Ann Sc Norm Super Pisa Cl Sci, 1996, 23: 119–148
[14]
Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math, 2015, 272: 399–470
CrossRef Google scholar
[15]
Shi Y, Xu J, Xu X. On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity. J Math Phys, 2015, 56(2): 022703
CrossRef Google scholar
[16]
Whitney H. Analytical extensions of differentiable functions defined on closed set. Trans Amer Math Soc, 1934, 36: 63–89
CrossRef Google scholar
[17]
Wu J, Xu X. A KAM theorem for some partial differential equations in one dimension. Proc Amer Math Soc, 2016, 144(5): 2149–2160
CrossRef Google scholar
[18]
Xu X, Geng J. KAM tori for higher dimensional beam equation with a fixed constant potential. Sci China Ser A, 2009, 52(9): 2007–2018
CrossRef Google scholar
[19]
Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations. J Differential Equations, 2006, 230: 213–274
CrossRef Google scholar
[20]
Zakharov V E. Stability of periodic waves of finite amplitude on the surface of deep fluid. J Appl Mech Tech Phys, 1968, 2: 190–194

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(272 KB)

Accesses

Citations

Detail

Sections
Recommended

/