![](/develop/static/imgs/pdf.png)
Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential
Xindong XU
Quasi-periodic solutions for class of Hamiltonian partial differential equations with fixed constant potential
We consider Hamiltonian partial differential equations utt +|∂x|u+ σu = f(u), x ∈ , t ∈, with periodic boundary conditions, where f(u) is a real-analytic function of the form f(u) = u5 + o(u5) near u = 0, σ ∈ (0, 1) is a fixed constant, and T= R/2πZ. A family of quasi-periodic solutions with 2-dimensional are constructed for the equation above with σ ∈ (0, 1)\ . The proof is based on infinite-dimensional KAM theory and partial Birkhoff normal form.
Dense frequency / quasi-periodic solution / Birkhoff normal form
[1] |
Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 1999, 12: 823–850
CrossRef
Google scholar
|
[2] |
Chierchia L, You J. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys, 2000, 211: 498–525
CrossRef
Google scholar
|
[3] |
Craig W, Worfolk P A. An integrable normal form for water waves in infinite depth. Phys D, 1995, 84: 513–531
CrossRef
Google scholar
|
[4] |
Craig W, Sulem C. Mapping properties of normal forms transformations for water waves. Boll Unione Mat Ital, 2016, 9(2): 289–318
CrossRef
Google scholar
|
[5] |
Eliasson L H, Grébert B, Kuksin S B. KAM for the nonlinear beam equation. Geom Funct Anal, 2016, 26: 1588–1715
CrossRef
Google scholar
|
[6] |
Geng J, Xu X, You J. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math, 2011, 226: 5361–5402
CrossRef
Google scholar
|
[7] |
Geng J, You J. A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J Differential Equations, 2005, 209: 1–56
CrossRef
Google scholar
|
[8] |
Geng J, You J. A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Comm Math Phys, 2006, 262: 343–372
CrossRef
Google scholar
|
[9] |
Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann Math, 1996, 143: 149–179
CrossRef
Google scholar
|
[10] |
Liang Z. Quasi-periodic solutions for 1D Schrödinger equation with the nonlinearity |u|2pu. J Differential Equations, 2008, 244: 2185–2225
CrossRef
Google scholar
|
[11] |
Liang Z, You J. Quasi-periodic solutions for 1D Schrödinger equation with higher nonlinearity. SIAM J Math Anal, 2005, 36(2): 1965–1990
CrossRef
Google scholar
|
[12] |
Pöschel J.Quasi-periodic solutions for a nonlinear wave equation. Comment Math Helv, 1996, 71:269–296
CrossRef
Google scholar
|
[13] |
Pöschel J. A KAM theorem for some nonlinear partial differential equations. Ann Sc Norm Super Pisa Cl Sci, 1996, 23: 119–148
|
[14] |
Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math, 2015, 272: 399–470
CrossRef
Google scholar
|
[15] |
Shi Y, Xu J, Xu X. On quasi-periodic solutions for generalized Boussinesq equation with quadratic nonlinearity. J Math Phys, 2015, 56(2): 022703
CrossRef
Google scholar
|
[16] |
Whitney H. Analytical extensions of differentiable functions defined on closed set. Trans Amer Math Soc, 1934, 36: 63–89
CrossRef
Google scholar
|
[17] |
Wu J, Xu X. A KAM theorem for some partial differential equations in one dimension. Proc Amer Math Soc, 2016, 144(5): 2149–2160
CrossRef
Google scholar
|
[18] |
Xu X, Geng J. KAM tori for higher dimensional beam equation with a fixed constant potential. Sci China Ser A, 2009, 52(9): 2007–2018
CrossRef
Google scholar
|
[19] |
Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations. J Differential Equations, 2006, 230: 213–274
CrossRef
Google scholar
|
[20] |
Zakharov V E. Stability of periodic waves of finite amplitude on the surface of deep fluid. J Appl Mech Tech Phys, 1968, 2: 190–194
|
/
〈 |
|
〉 |