Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises

Suxin WANG, Yiming JIANG

PDF(269 KB)
PDF(269 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 187-201. DOI: 10.1007/s11464-017-0665-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises

Author information +
History +

Abstract

We study a strongly elliptic partial differential operator with timevarying coefficient in a parabolic diagonalizable stochastic equation driven by fractional noises. Based on the existence and uniqueness of the solution, we then obtain a kernel estimator of time-varying coefficient and the convergence rates. An example is given to illustrate the theorem.

Keywords

Fractional white noise / elliptic partial differential operator / kernel estimator

Cite this article

Download citation ▾
Suxin WANG, Yiming JIANG. Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises. Front. Math. China, 2018, 13(1): 187‒201 https://doi.org/10.1007/s11464-017-0665-9

References

[1]
Bally V, Pardoux E. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal, 1994, 9: 27–64
CrossRef Google scholar
[2]
Bo L, Jiang Y, Wang Y. On a class of stochastic Anderson models with fractional noises. Stoch Anal Appl, 2008, 26(2): 270–287
CrossRef Google scholar
[3]
Bo L, Jiang Y,Wang Y. Stochastic Cahn-Hilliard equation with fractional noises. Stoch Dyn, 2008, 8(4): 643–665
CrossRef Google scholar
[4]
De S. Stochastic models of population growth and spread. Bull Math Biol, 1987, 49: 1–11
CrossRef Google scholar
[5]
Hu Y. Heat equation with fractional white noise potentials. Appl Math Optim, 2001, 43: 221–243
CrossRef Google scholar
[6]
Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist Probab Lett, 2010, 80: 1030–1038
CrossRef Google scholar
[7]
Huebner M, Lototsky S. Asymptotic analysis of a kernel estimator for parabolic SPDE’s with time-dependent coefficients. Ann Appl Probab, 2000, 10(4): 1246–1258
[8]
Huebner M, Lototsky S, Rozovskii B L. Asymptotic properties of an approximate maximum likelihood estimator for stochastic PDEs. In: Statistics and Control of Stochastic Processes: In honour of R. Sh. Liptser. Singapore: World Scientific, 1998, 139–155
[9]
Huebner M, Rozovskii B. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE’s. Probab Theory Related Fields, 1995, 103: 143–163
CrossRef Google scholar
[10]
Jiang Y, Shi K, Wang Y. Large deviation principle for the fourth-order stochastic heat equations with fractional noises. Acta Math Sin (Engl Ser), 2010, 26: 89–106
CrossRef Google scholar
[11]
Jiang Y, Wei T, Zhou X. Stochastic generalized Burgers equations driven by fractional noises. J Differential Equations, 2012, 252(2): 1934–1961
CrossRef Google scholar
[12]
Mann Jr J A,Woyczynski WA. Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys A, 2001, 291: 159–183
CrossRef Google scholar
[13]
Nualart D. The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag, 2006
[14]
Nualart D, Ouknine Y. Regularization of quasilinear heat equations by a fractional noise. Stoch Dyn, 2004, 4(2): 201–221
CrossRef Google scholar
[15]
Prakasa Rao B L S. Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion. Random Oper Stoch Equ, 2003, 11: 229–242
CrossRef Google scholar
[16]
Prakasa Rao B L S. Berry-Esseen bound for MLE for linear stochastic differential equations driven by fractional Brownian motion. J Korean Statist Soc, 2005, 34: 281–295
[17]
Reed M, Simon B. Methods of modern mathematical physics. New York: Academic Press, Inc, 1980
[18]
Safarov Y, Vassiliev D. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. Transl Math Monogr, Vol 155. Providence: Amer Math Soc, 1997
[19]
Tindel S, Tudor C A, Viens F. Stochastic evolution equations with fractional Brownian motion. Probab Theory Related Fields, 2003, 127: 186–204
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(269 KB)

Accesses

Citations

Detail

Sections
Recommended

/