Robust inference in linear mixed model with skew normal-symmetric error
Mixia WU, Ye TIAN, Aiyi LIU
Robust inference in linear mixed model with skew normal-symmetric error
Linear mixed effects models with general skew normal-symmetric (SNS) error are considered and several properties of the SNS distributions are obtained. Under the SNS settings, ANOVA-type estimates of variance components in the model are unbiased, the ANOVA-type F-tests are exact F-tests in SNS setting, and the exact confidence intervals for fixed effects are constructed. Also the power of ANOVA-type F-tests for components are free of the skewing function if the random effects normally distributed. For illustration of the main results, simulation studies on the robustness of the models are given by comparisons of multivariate skew-normal, multivariate skew normal-Laplace, multivariate skew normal-uniform, multivariate skew normal-symmetric, and multivariate normal distributed errors. A real example is provided for the illustration of the proposed method.
Skew normal-symmetric (SNS) / ANOVA-type F-test / mixed effect
[1] |
Arellano-ValleR B, GentonM G. Fundamental skew distributions. J Multivariate Anal, 2005, 96: 93–116
CrossRef
Google scholar
|
[2] |
AzzaliniA. The skew-normal distribution and related multivariate families (with discussion). Scand J Stat, 2005, 32: 159–188
CrossRef
Google scholar
|
[3] |
AzzaliniA, Dalla ValleA. The multivariate skew-normal distribution. Biometrika, 1996, 83: 715–726
CrossRef
Google scholar
|
[4] |
GentonM G. Discussion of “The Skew-normal”. Scand J Stat, 2005, 32: 189–198
CrossRef
Google scholar
|
[5] |
GuptaA K, ChangF C. Multivariate skew-symmetric distributions. Statist Probab Lett, 2003, 16: 643–646
CrossRef
Google scholar
|
[6] |
HuangW J, ChenY H. Quadratic forms of multivariate skew normal-symmetric distributions. Statist Probab Lett, 2006, 76: 871–879
CrossRef
Google scholar
|
[7] |
KhuriA I, MathewT, SinhaB K. Statistical Tests for Mixed Linear Models. New York: John Wiley & Sons, 1998
CrossRef
Google scholar
|
[8] |
LachosV H, DeyD K, CanchoV G. Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective. J Statist Plann Inference, 2009, 139: 4098–4110
CrossRef
Google scholar
|
[9] |
LachosV H, GhoshP, Arellano-ValleR B. Likelihood based inference for skew-normal independent linear mixed models. Statist Sinica, 2010, 20: 303–322
|
[10] |
LairdN M, WareJ H. Random effects models for longitudinal data. Biometrics, 1982, 38: 963–974
CrossRef
Google scholar
|
[11] |
MaY, GentonM G. Flexible class of skew-symmetric distributions. Scand J Stat, 2004, 31: 459–468
CrossRef
Google scholar
|
[12] |
NadarajahS, KotzS. Skewed distributions generated by the normal kernel.Statist Probab Lett, 2003, 65: 269–277
CrossRef
Google scholar
|
[13] |
SearleS R, CasellaG, McCullochC E. Variance Components. New York: Wiley, 1992
CrossRef
Google scholar
|
[14] |
WangS G, ChowS C. Advanced Linear Models: Theory and Applications. New York: Marcel Dekker, Inc, 1994
|
[15] |
WuM X. Introduction to Linear Mixed Models. Beijing: Science Press, 2013 (in Chinese)
|
[16] |
WuM X, WangS G. Simultaneous optimal estimates of fixed effects and variance components in the mixed model. Sci China, Ser A, 2004, 47: 787–799
CrossRef
Google scholar
|
[17] |
WuM X, ZhaoJ, WangT H, ZhaoY. The ANOVA-type inference in linear mixed model with skew-normal error. J Syst Sci Complex, 2017, 30: 710–720
CrossRef
Google scholar
|
[18] |
YeR D, WangT H. Inferences in linear mixed model with skew-normal random effects. Acta Math Sin (Engl Ser), 2015, 31: 576–594
CrossRef
Google scholar
|
[19] |
YeR D, WangT H, GuptaA K. Tests in variance components models under skewnormal settings. Metrika, 2015, 78: 885–904
CrossRef
Google scholar
|
/
〈 | 〉 |