Density functions of doubly-perturbed stochastic differential equations with jumps

Yulin SONG

PDF(277 KB)
PDF(277 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 161-172. DOI: 10.1007/s11464-017-0659-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Density functions of doubly-perturbed stochastic differential equations with jumps

Author information +
History +

Abstract

We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on .

Keywords

Doubly-perturbed stochastic differential equations (SDEs) / absolute continuity / Malliavin calculus / subordinated Brownian motions

Cite this article

Download citation ▾
Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps. Front. Math. China, 2018, 13(1): 161‒172 https://doi.org/10.1007/s11464-017-0659-7

References

[1]
Chaumont L, Doney R A. Some calculations for doubly-perturbed Brownian motion. Stochastic Process Appl, 2000, 85: 61–74
[2]
Davis B.Weak limits of perturbed random walks and the equation Yt= Bt+ αsups≤t Ys+βinfs≤tYs: Ann Probab, 1996, 24: 2007–2023
[3]
Davis B. Brownian motion and random walk perturbed at extrema. Probab Theory Related Fields, 1999, 113: 501–518
[4]
Doney R A. Some calculations for perturbed Brownian motion. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXII. Lecture Notes in Math, Vol 1686. Berlin: Springer, 1998, 231–236
CrossRef Google scholar
[5]
Doney R A,Zhang T S.Perturbed Skorohod equation and perturbed reflected diffusion processes. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 107–121
[6]
Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J Math, 2009, 50: 491–520
[7]
Le Gall J F, Yor M. Excursions browniennes et carrés de processus de Bessel. C R Acad Sci Sr 1, Math, 1986, 303: 73–76
[8]
Luo J.W .Doubly perturbed jump-diffusion processes. J Math Anal Appl, 2009, 351: 147–151
[9]
Nualart D. The Malliavin Calculus and Related Topics. New York: Springer-Verlag, 2006
[10]
Perman M, Werner W. Perturbed Brownian motion. Probab Theory Related Fields, 1997, 108: 357–383
[11]
Sato K. Lévy Processes and Innitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999
[12]
Werner W. Some remarks on perturbed Brownian motion. In: Azéma J, Emery M, Meyer P A, Yor M, eds. Séminaire de Probabilités XXIX. Lecture Notes in Math, Vol 1613. Berlin: Springer, 1995, 37–43
[13]
Yue W, Zhang T S. Absolutely continuous of the laws of perturbed diffusion processes and perturbed reflected diffusion processes. J Theoret Probab, 2015, 28: 587–618
[14]
Zhang X C. Densities for SDEs driven by degenerated α-stable processes. Ann Probab, 2014, 42: 1885–1910

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/