Density functions of doubly-perturbed stochastic differential equations with jumps

Yulin SONG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 161 -172.

PDF (277KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 161 -172. DOI: 10.1007/s11464-017-0659-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Density functions of doubly-perturbed stochastic differential equations with jumps

Author information +
History +
PDF (277KB)

Abstract

We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on .

Keywords

Doubly-perturbed stochastic differential equations (SDEs) / absolute continuity / Malliavin calculus / subordinated Brownian motions

Cite this article

Download citation ▾
Yulin SONG. Density functions of doubly-perturbed stochastic differential equations with jumps. Front. Math. China, 2018, 13(1): 161-172 DOI:10.1007/s11464-017-0659-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chaumont L, Doney R A. Some calculations for doubly-perturbed Brownian motion. Stochastic Process Appl, 2000, 85: 61–74

[2]

Davis B.Weak limits of perturbed random walks and the equation Yt= Bt+ αsups≤t Ys+βinfs≤tYs: Ann Probab, 1996, 24: 2007–2023

[3]

Davis B. Brownian motion and random walk perturbed at extrema. Probab Theory Related Fields, 1999, 113: 501–518

[4]

Doney R A. Some calculations for perturbed Brownian motion. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXII. Lecture Notes in Math, Vol 1686. Berlin: Springer, 1998, 231–236

[5]

Doney R A,Zhang T S.Perturbed Skorohod equation and perturbed reflected diffusion processes. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 107–121

[6]

Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J Math, 2009, 50: 491–520

[7]

Le Gall J F, Yor M. Excursions browniennes et carrés de processus de Bessel. C R Acad Sci Sr 1, Math, 1986, 303: 73–76

[8]

Luo J.W .Doubly perturbed jump-diffusion processes. J Math Anal Appl, 2009, 351: 147–151

[9]

Nualart D. The Malliavin Calculus and Related Topics. New York: Springer-Verlag, 2006

[10]

Perman M, Werner W. Perturbed Brownian motion. Probab Theory Related Fields, 1997, 108: 357–383

[11]

Sato K. Lévy Processes and Innitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999

[12]

Werner W. Some remarks on perturbed Brownian motion. In: Azéma J, Emery M, Meyer P A, Yor M, eds. Séminaire de Probabilités XXIX. Lecture Notes in Math, Vol 1613. Berlin: Springer, 1995, 37–43

[13]

Yue W, Zhang T S. Absolutely continuous of the laws of perturbed diffusion processes and perturbed reflected diffusion processes. J Theoret Probab, 2015, 28: 587–618

[14]

Zhang X C. Densities for SDEs driven by degenerated α-stable processes. Ann Probab, 2014, 42: 1885–1910

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (277KB)

797

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/