Density functions of doubly-perturbed stochastic differential equations with jumps
Yulin SONG
Density functions of doubly-perturbed stochastic differential equations with jumps
We consider a real-valued doubly-perturbed stochastic differential equation driven by a subordinated Brownian motion. By using classic Malliavin calculus, we prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure on .
Doubly-perturbed stochastic differential equations (SDEs) / absolute continuity / Malliavin calculus / subordinated Brownian motions
[1] |
Chaumont L, Doney R A. Some calculations for doubly-perturbed Brownian motion. Stochastic Process Appl, 2000, 85: 61–74
|
[2] |
Davis B.Weak limits of perturbed random walks and the equation Yt= Bt+ αsups≤t Ys+βinfs≤tYs: Ann Probab, 1996, 24: 2007–2023
|
[3] |
Davis B. Brownian motion and random walk perturbed at extrema. Probab Theory Related Fields, 1999, 113: 501–518
|
[4] |
Doney R A. Some calculations for perturbed Brownian motion. In: Azéma J, Émery M, Ledoux M, Yor M, eds. Séminaire de Probabilités XXXII. Lecture Notes in Math, Vol 1686. Berlin: Springer, 1998, 231–236
CrossRef
Google scholar
|
[5] |
Doney R A,Zhang T S.Perturbed Skorohod equation and perturbed reflected diffusion processes. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 107–121
|
[6] |
Kusuoka S. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J Math, 2009, 50: 491–520
|
[7] |
Le Gall J F, Yor M. Excursions browniennes et carrés de processus de Bessel. C R Acad Sci Sr 1, Math, 1986, 303: 73–76
|
[8] |
Luo J.W .Doubly perturbed jump-diffusion processes. J Math Anal Appl, 2009, 351: 147–151
|
[9] |
Nualart D. The Malliavin Calculus and Related Topics. New York: Springer-Verlag, 2006
|
[10] |
Perman M, Werner W. Perturbed Brownian motion. Probab Theory Related Fields, 1997, 108: 357–383
|
[11] |
Sato K. Lévy Processes and Innitely Divisible Distributions. Cambridge: Cambridge Univ Press, 1999
|
[12] |
Werner W. Some remarks on perturbed Brownian motion. In: Azéma J, Emery M, Meyer P A, Yor M, eds. Séminaire de Probabilités XXIX. Lecture Notes in Math, Vol 1613. Berlin: Springer, 1995, 37–43
|
[13] |
Yue W, Zhang T S. Absolutely continuous of the laws of perturbed diffusion processes and perturbed reflected diffusion processes. J Theoret Probab, 2015, 28: 587–618
|
[14] |
Zhang X C. Densities for SDEs driven by degenerated α-stable processes. Ann Probab, 2014, 42: 1885–1910
|
/
〈 | 〉 |