Global algorithms for maximal eigenpair

Mu-Fa CHEN

Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1023 -1043.

PDF (219KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1023 -1043. DOI: 10.1007/s11464-017-0658-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Global algorithms for maximal eigenpair

Author information +
History +
PDF (219KB)

Abstract

This paper is a continuation of our previous work [Front. Math. China, 2016, 11(6): 1379–1418] where an efficient algorithm for computing the maximal eigenpair was introduced first for tridiagonal matrices and then extended to the irreducible matrices with nonnegative off-diagonal elements. This paper introduces mainly two global algorithms for computing the maximal eigenpair in a rather general setup, including even a class of real (with some negative off-diagonal elements) or complex matrices.

Keywords

Maximal eigenpair / shifted inverse iteration / global algorithm

Cite this article

Download citation ▾
Mu-Fa CHEN. Global algorithms for maximal eigenpair. Front. Math. China, 2017, 12(5): 1023-1043 DOI:10.1007/s11464-017-0658-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ArapostathisA, BorkarV S, KumarK S. Risk-sensitive control and an abstract Collatz–Wielandt formula.J Theoret Probab, 2016, 29(4): 1458–1484

[2]

ChangK C. Nonlinear extensions of the Perron–Frobenius theorem and the Krein–Rutman theorem.J Fixed Point Theory Appl, 2014, 15: 433–457

[3]

ChenM F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed.Singapore: World Scientific, 2004

[4]

ChenM F. Speed of stability for birth-death processes.Front Math China, 2010, 5(3): 379–515

[5]

ChenM F. Efficient initials for computing the maximal eigenpair.Front Math China, 2016, 11(6): 1379–1418; see also volume 4 in the middle of author’s homepage: One may check it through the link:

[6]

ChenM F. Efficient algorithm for principal eigenpair of discrete p-Laplacian.Preprint, 2017

[7]

ChenM F, ZhangX. Isospectral operators.Commun Math Stat, 2014, 2: 17–32

[8]

ChenR R. An extended class of time-continuous branching processes.J Appl Probab, 1997, 34(1): 14–23

[9]

DonskerW D, VaradhanS R S. On a variational formula for the principal eigenvalue for operators with maximum principle.Proc Natl Acad Sci, 1975, 72(3): 780–783

[10]

NoutsosD. On Perron–Frobenius property of matrices having some negative entries.Linear Algebra Appl, 2006, 412: 132–153

[11]

NoutsosD. Perron Frobenius theory and some extensions.2008,

[12]

NoutsosD, VargaR S. On the Perron–Frobenius theory for complex matrices.Linear Algebra Appl, 2012, 437: 1071–1088

[13]

SheuS J. Stochastic control and principal eigenvalue.Stochastics, 1984, 11(3-4): 191–211

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (219KB)

961

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/