Maximal estimate for solutions to a class of dispersive equation with radial initial value

Yong DING , Yaoming NIU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1057 -1084.

PDF (252KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1057 -1084. DOI: 10.1007/s11464-017-0654-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Maximal estimate for solutions to a class of dispersive equation with radial initial value

Author information +
History +
PDF (252KB)

Abstract

Consider the general dispersive equation defined by

{itu+ϕ(Δ)u=0,(x,t)n×,u(x,0)=f(x),f(n),
where φ(Δ) is a pseudo-differential operator with symbol φ(|ξ|). In this paper, for φ satisfying suitable growth conditions and the radial initial data f in Sobolev space, we give the local and global Lq estimate for the maximal operator Sϕ* defined by Sϕ*f(x) = sup0<t<1|St,φf(x)|, where St,φfis the solution of equation (∗). These estimates imply the a.e. convergence of the solution of equation (∗).

Keywords

Dispersive equation / maximal operator / local estimate / global estimate

Cite this article

Download citation ▾
Yong DING, Yaoming NIU. Maximal estimate for solutions to a class of dispersive equation with radial initial value. Front. Math. China, 2017, 12(5): 1057-1084 DOI:10.1007/s11464-017-0654-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsR A, FournierJ J F. Sobolev Spaces.Pure and Applied Mathematics, Vol 140. Amsterdam: Elsevier, 2003

[2]

BerghJ, LöfströmJ. Interpolation Spaces.Grundlehren Math Wiss, Vol 223, Berlin: Springer-Verlag, 1976

[3]

BourgainJ. A remark on Schrödinger operators.Israel J Math, 1992, 77: 1–16

[4]

BourgainJ. On the Schrödinger maximal function in higher dimension.Proc Steklov Inst Math, 2013, 280: 46–60

[5]

BourgainJ. A note on the Schrödinger maximal function.J Anal Math, 2016, 130: 393–396

[6]

CarberyA. Radial Fourier multipliers and associated maximal functions.In: Peral I, Rubio de Francia J L, eds. Recent Progress in Fourier Analysis. North-Holland Math Stud, Vol 111. Amsterdam: North-Holland, 1985, 49–56

[7]

CarlesonL. Some analytical problems related to statistical mechanics.In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45

[8]

ChoY, LeeS. Strichartz estimates in spherical coordinates.Indiana Univ Math J, 2013, 62: 991–1020

[9]

ChoY, LeeS, OzawaT. On small amplitude solutions to the generalized Boussinesq equations.Discrete Contin Dyn Syst, 2007, 17: 691–711

[10]

CowlingM. Pointwise behavior of solutions to Schrödinger equations.In: Mauceri G, Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 992. Berlin: Springer, 1983, 83–90

[11]

DahlbergB, KenigC. A note on the almost everywhere behaviour of solutions to the Schrödinger equation.In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209

[12]

DingY, NiuY. Global L2 estimates for a class maximal operators associated to general dispersive equations.J Inequal Appl, 2015, 199: 1–21

[13]

DingY, NiuY. Weighted maximal estimates along curve associated with dispersive equations.Anal Appl (Singap), 2017, 15: 225–240

[14]

DingY, NiuY. Convergence of solutions of general dispersive equations along curve.Chin Ann Math Ser B (to appear)

[15]

DuX, GuthL, LiX.A sharp Schrödinger maximal estimate in ℝ2.Ann of Math, 2017, 186: 607–640

[16]

FrölichJ, LenzmannE. Mean-Field limit of quantum Bose gases and nonlinear Hartree equation.Sémin Équ Dériv Partielles, 2004, 19: 1–26

[17]

GuoZ, PengL, WangB. Decay estimates for a class of wave equations.J Func Anal, 2008, 254: 1642–1660

[18]

GuoZ, WangY. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations.J Anal Math, 2014, 124: 1–38

[19]

KenigC, PonceG, VegaL.Well-posedness of the initial value problem for the Kortewegde Vries equation.J Amer Math Soc, 1991, 4: 323–347

[20]

KenigC, RuizA. A strong type (2; 2) estimate for a maximal operator associated to the Schrödinger equations.Trans Amer Math Soc, 1983, 280: 239–246

[21]

KriegerJ, LenzmannE, RaphaëlP.Nondispersive solutions to the L2-critical half-wave equation.Arch Ration Mech Anal, 2013, 209: 61–129

[22]

LaskinN. Fractional quantum mechanics.Phys Rev E,2002, 62: 3135–3145

[23]

LeeS. On pointwise convergence of the solutions to Schrödinger equations in ℝ2.Int Math Res Not IMRN, 2006, Art ID 32597: 1–21

[24]

MoyuaA, VargasA, VegaL. Schrödinger maximal function and restriction properties of the Fourier transform.Int Math Res Not IMRN, 1996, 16: 703–815

[25]

MuckenhouptB. Weighted norm inequalities for the Fourier transform.Trans Amer Math Soc, 1983, 276: 729–742

[26]

PrestiniE. Radial functions and regularity of solutions to the Schrödinger equation.Monatsh Math, 1990, 109: 135–143

[27]

RogersK. A local smoothing estimate for the Schrödinger equation. Adv Math, 2008, 219: 2105–2122

[28]

RogersK, VillarroyaP. Global estimates for the Schrödinger maximal operator.Ann Acad Sci Fenn Math, 2007, 32: 425–435

[29]

SjölinP. Convolution with oscillating kernels.Indiana Univ Math J, 1981, 30: 47–55

[30]

SjölinP. Regularity of Solutions to the Schrödinger equation.Duke Math J, 1987, 55: 699–715

[31]

SjölinP. Global maximal estimates for solutions to the Schrödinger equation.Studia Math, 1994, 110: 105–114

[32]

SjölinP. Radial functions and maximal estimates for solutions to the Schrödinger equation.J Aust Math Soc Ser A, 1995, 59: 134–142

[33]

SjölinP. Lp maximal estimates for solutions to the Schrödinger equations.Math Scand, 1997, 81: 36–68

[34]

SjölinP. Homogeneous maximal estimates for solutions to the Schrödinger equation.Bull Inst Math Acad Sin, 2002, 30: 133–140

[35]

SjölinP. Spherical harmonics and maximal estimates for the Schrödinger equation.Ann Acad Sci Fenn Math, 2005, 30: 393–406

[36]

SjölinP. Radial functions and maximal operators of Schrödinger type.Indiana Univ Math J, 2011, 60: 143–159

[37]

SteinE M. Oscillatory integrals in Fourier analysis.In: Stein E M, ed. Beijing Lectures in Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 307–355

[38]

SteinE M, WeissG.Introduction to Fourier Analysis on Euclidean Spaces.Princeton: Princeton Univ Press, 1971

[39]

TaoT. A sharp bilinear restrictions estimate for paraboloids.Geom Funct Anal, 2003, 13: 1359–1384

[40]

TaoT, VargasA. A bilinear approach to cone multipliers II. Applications.Geom Funct Anal, 2000, 10: 216–258

[41]

VegaL. Schrödinger equations: Pointwise convergence to the initial data.Proc Amer Math Soc, 1988, 102: 874–878

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (252KB)

1033

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/