Maximal estimate for solutions to a class of dispersive equation with radial initial value
Yong DING, Yaoming NIU
Maximal estimate for solutions to a class of dispersive equation with radial initial value
Consider the general dispersive equation defined by
where φ() is a pseudo-differential operator with symbol φ(|ξ|). In this paper, for φ satisfying suitable growth conditions and the radial initial data f in Sobolev space, we give the local and global Lq estimate for the maximal operator defined by f(x) = sup0<t<1|St,φf(x)|, where St,φfis the solution of equation (∗). These estimates imply the a.e. convergence of the solution of equation (∗).Dispersive equation / maximal operator / local estimate / global estimate
[1] |
AdamsR A, FournierJ J F. Sobolev Spaces.Pure and Applied Mathematics, Vol 140. Amsterdam: Elsevier, 2003
|
[2] |
BerghJ, LöfströmJ. Interpolation Spaces.Grundlehren Math Wiss, Vol 223, Berlin: Springer-Verlag, 1976
CrossRef
Google scholar
|
[3] |
BourgainJ. A remark on Schrödinger operators.Israel J Math, 1992, 77: 1–16
CrossRef
Google scholar
|
[4] |
BourgainJ. On the Schrödinger maximal function in higher dimension.Proc Steklov Inst Math, 2013, 280: 46–60
CrossRef
Google scholar
|
[5] |
BourgainJ. A note on the Schrödinger maximal function.J Anal Math, 2016, 130: 393–396
CrossRef
Google scholar
|
[6] |
CarberyA. Radial Fourier multipliers and associated maximal functions.In: Peral I, Rubio de Francia J L, eds. Recent Progress in Fourier Analysis. North-Holland Math Stud, Vol 111. Amsterdam: North-Holland, 1985, 49–56
CrossRef
Google scholar
|
[7] |
CarlesonL. Some analytical problems related to statistical mechanics.In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1979, 5–45
CrossRef
Google scholar
|
[8] |
ChoY, LeeS. Strichartz estimates in spherical coordinates.Indiana Univ Math J, 2013, 62: 991–1020
CrossRef
Google scholar
|
[9] |
ChoY, LeeS, OzawaT. On small amplitude solutions to the generalized Boussinesq equations.Discrete Contin Dyn Syst, 2007, 17: 691–711
CrossRef
Google scholar
|
[10] |
CowlingM. Pointwise behavior of solutions to Schrödinger equations.In: Mauceri G, Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 992. Berlin: Springer, 1983, 83–90
|
[11] |
DahlbergB, KenigC. A note on the almost everywhere behaviour of solutions to the Schrödinger equation.In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209
|
[12] |
DingY, NiuY. Global L2 estimates for a class maximal operators associated to general dispersive equations.J Inequal Appl, 2015, 199: 1–21
|
[13] |
DingY, NiuY. Weighted maximal estimates along curve associated with dispersive equations.Anal Appl (Singap), 2017, 15: 225–240
CrossRef
Google scholar
|
[14] |
DingY, NiuY. Convergence of solutions of general dispersive equations along curve.Chin Ann Math Ser B (to appear)
|
[15] |
DuX, GuthL, LiX.A sharp Schrödinger maximal estimate in ℝ2.Ann of Math, 2017, 186: 607–640
CrossRef
Google scholar
|
[16] |
FrölichJ, LenzmannE. Mean-Field limit of quantum Bose gases and nonlinear Hartree equation.Sémin Équ Dériv Partielles, 2004, 19: 1–26
|
[17] |
GuoZ, PengL, WangB. Decay estimates for a class of wave equations.J Func Anal, 2008, 254: 1642–1660
CrossRef
Google scholar
|
[18] |
GuoZ, WangY. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations.J Anal Math, 2014, 124: 1–38
CrossRef
Google scholar
|
[19] |
KenigC, PonceG, VegaL.Well-posedness of the initial value problem for the Kortewegde Vries equation.J Amer Math Soc, 1991, 4: 323–347
CrossRef
Google scholar
|
[20] |
KenigC, RuizA. A strong type (2; 2) estimate for a maximal operator associated to the Schrödinger equations.Trans Amer Math Soc, 1983, 280: 239–246
|
[21] |
KriegerJ, LenzmannE, RaphaëlP.Nondispersive solutions to the L2-critical half-wave equation.Arch Ration Mech Anal, 2013, 209: 61–129
CrossRef
Google scholar
|
[22] |
LaskinN. Fractional quantum mechanics.Phys Rev E,2002, 62: 3135–3145
CrossRef
Google scholar
|
[23] |
LeeS. On pointwise convergence of the solutions to Schrödinger equations in ℝ2.Int Math Res Not IMRN, 2006, Art ID 32597: 1–21
|
[24] |
MoyuaA, VargasA, VegaL. Schrödinger maximal function and restriction properties of the Fourier transform.Int Math Res Not IMRN, 1996, 16: 703–815
|
[25] |
MuckenhouptB. Weighted norm inequalities for the Fourier transform.Trans Amer Math Soc, 1983, 276: 729–742
CrossRef
Google scholar
|
[26] |
PrestiniE. Radial functions and regularity of solutions to the Schrödinger equation.Monatsh Math, 1990, 109: 135–143
CrossRef
Google scholar
|
[27] |
RogersK. A local smoothing estimate for the Schrödinger equation. Adv Math, 2008, 219: 2105–2122
CrossRef
Google scholar
|
[28] |
RogersK, VillarroyaP. Global estimates for the Schrödinger maximal operator.Ann Acad Sci Fenn Math, 2007, 32: 425–435
|
[29] |
SjölinP. Convolution with oscillating kernels.Indiana Univ Math J, 1981, 30: 47–55
CrossRef
Google scholar
|
[30] |
SjölinP. Regularity of Solutions to the Schrödinger equation.Duke Math J, 1987, 55: 699–715
CrossRef
Google scholar
|
[31] |
SjölinP. Global maximal estimates for solutions to the Schrödinger equation.Studia Math, 1994, 110: 105–114
CrossRef
Google scholar
|
[32] |
SjölinP. Radial functions and maximal estimates for solutions to the Schrödinger equation.J Aust Math Soc Ser A, 1995, 59: 134–142
CrossRef
Google scholar
|
[33] |
SjölinP. Lp maximal estimates for solutions to the Schrödinger equations.Math Scand, 1997, 81: 36–68
CrossRef
Google scholar
|
[34] |
SjölinP. Homogeneous maximal estimates for solutions to the Schrödinger equation.Bull Inst Math Acad Sin, 2002, 30: 133–140
|
[35] |
SjölinP. Spherical harmonics and maximal estimates for the Schrödinger equation.Ann Acad Sci Fenn Math, 2005, 30: 393–406
|
[36] |
SjölinP. Radial functions and maximal operators of Schrödinger type.Indiana Univ Math J, 2011, 60: 143–159
CrossRef
Google scholar
|
[37] |
SteinE M. Oscillatory integrals in Fourier analysis.In: Stein E M, ed. Beijing Lectures in Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 307–355
|
[38] |
SteinE M, WeissG.Introduction to Fourier Analysis on Euclidean Spaces.Princeton: Princeton Univ Press, 1971
|
[39] |
TaoT. A sharp bilinear restrictions estimate for paraboloids.Geom Funct Anal, 2003, 13: 1359–1384
CrossRef
Google scholar
|
[40] |
TaoT, VargasA. A bilinear approach to cone multipliers II. Applications.Geom Funct Anal, 2000, 10: 216–258
CrossRef
Google scholar
|
[41] |
VegaL. Schrödinger equations: Pointwise convergence to the initial data.Proc Amer Math Soc, 1988, 102: 874–878
|
/
〈 | 〉 |