Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces

Wei WANG , Jingshi XU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1235 -1246.

PDF (168KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1235 -1246. DOI: 10.1007/s11464-017-0653-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces

Author information +
History +
PDF (168KB)

Abstract

The boundedness of multilinear Calderón-Zygmund operators and their commutators with bounded mean oscillation (BMO) functions in variable exponent Morrey spaces are obtained.

Keywords

Multilinear Calderón-Zygmund operator / bounded mean oscillation (BMO) function / commutator / Morrey space / variable exponent

Cite this article

Download citation ▾
Wei WANG, Jingshi XU. Multilinear Calderón-Zygmund operators and their commutators with BMO functions in variable exponent Morrey spaces. Front. Math. China, 2017, 12(5): 1235-1246 DOI:10.1007/s11464-017-0653-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlmeidaA, HasanovJ, SamkoS. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math J, 2008, 15: 195–208

[2]

AlmediaA, HästöP. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628–1655

[3]

Cruz-UribeD V, FiorenzaA. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Heidelberg: Springer, 2013

[4]

Cruz-UribeD V, FiorenzaA, MartellC, PérezC. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239–264

[5]

DieningL, HarjulehtoP, HästöP, and R°uˇziˇckaM. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, Vol 2017. Berlin: Springer, 2011

[6]

DieningL, H¨ast¨oP, RoudenkoS. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731–1768

[7]

DongB H, XuJ S. New Herz type Besov and Triebel-Lizorkin spaces with variable exponents. J Funct Spaces Appl, 2012, Article ID 384593, 27 pages

[8]

FuJ J, XuJ S. Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents. J Math Anal Appl, 2011, 381: 280–298

[9]

GrafakosL, TorresR H. Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124–164

[10]

HästöP. Local-to-global results in variable exponent spaces. Math Res Lett, 2009, 16: 263–278

[11]

HoK P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Math Inequal Appl, 2013, 16: 363–373

[12]

HoK P. Atomic decomposition of Hardy-Morrey spaces with variable exponents. Ann Acad Sci Fenn Math, 2015, 40: 31–62

[13]

HuangA W, XuJ S. Multilinear singular integrals and commutators in variable exponent Lebesgue spaces. Appl Math J Chinese Univ, 2010, 25: 69–77

[14]

IzukiM. Fractional integrals on Herz-Morrey spaces with variable exponents. Hiroshima Math J, 2010, 40: 343–355

[15]

IzukiM. Boundedness of commutators on Herz spaces with variable exponents. Rend Circ Mat Palermo, 2010, 59: 199–213

[16]

Kov´aˇcikO, ŔakosńıkJ. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41(4): 592–618

[17]

NakaiE, SawanoY. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748

[18]

ShiC, XuJ S. Herz type Besov and Triebel-Lizorkin spaces with variable exponent. Front Math China, 2013, 8: 907–921

[19]

TangC Q, WuQ, XuJ S. Commutators of multilinear Calderón-Zygmund operator and BMO functions in Herz-Morrey spaces with variable exponents. J Funct Spaces Appl, 2014, Article ID 162518, 12 pages

[20]

TaoX, ZhangH. On the boundedness of multilinear operators on weighted Herz-Morrey spaces. Taiwanese J Math, 2011, 15: 1527–1543

[21]

WangW, XuJ S. Commutators of multilinear singular integrals with Lipschits functions. Commun Math Res, 2009, 25: 318–328

[22]

XuJ S. Generalized commutators of multilinear singular integrals. Proc A Razmadze Math Inst, 2006, 142: 109–122

[23]

XuJ S. Multilinear commutators of multilinear singular integrals. Acta Math Sinica (Chin Ser), 2008, 51: 1021–1034 (in Chinese)

[24]

XuJ S. Variable Besov and Triebel-Lizorkin spaces. Ann Acad Sci Fenn Math, 2008, 33: 511–522

[25]

XuJ S. Admissibility for topological degree of Besov and Triebel-Lizorkin spaces with variable integrability. Georgian Math J, 2011, 18: 365–375

[26]

ZhouJ, CaoY H, LiL. Estimates of commutators for multilinear operators on Herztype spaces. Appl Math J Chinese Univ, 2010, 25(2): 177–184

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (168KB)

918

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/