Distribution of cube-free numbers with form [nc]

Min ZHANG , Jinjiang LI

Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1515 -1525.

PDF (155KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1515 -1525. DOI: 10.1007/s11464-017-0652-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Distribution of cube-free numbers with form [nc]

Author information +
History +
PDF (155KB)

Abstract

We prove that there are infinite cube-free numbers of the form [nc] for any fixed real number c ∈ (1, 11/6).

Keywords

Cube-free number / exponential sum / asymptotic formula

Cite this article

Download citation ▾
Min ZHANG, Jinjiang LI. Distribution of cube-free numbers with form [nc]. Front. Math. China, 2017, 12(6): 1515-1525 DOI:10.1007/s11464-017-0652-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BakerR C, BamksWD, BrüdernJ, ShparlinskiI E, WeingartnerA J. Piatetski-Shapiro sequences. Acta Arith, 2013, 157(1): 37–68

[2]

BalogA. On a variant of the Piatetski-Shapiro prime number theorem. Groupe de Travail en Théorie Analytique et Elementaire des Nombres 1987–1988. Publications Mathématiques Orsay 89-01. Orsay: Univ de Paris XI, 1989, 3–11

[3]

BurievK. Additive Problems with Prime Numbers. Thesis. Moscow: Moscow Univ, 1989 (in Russian)

[4]

CaoX D, ZhaiW G. The distribution of square-free numbers of the form [nc]. J Théor Nombres Bordeaux, 1998, 10(2): 287–299

[5]

CaoX D, ZhaiW G. Multiple exponential sums with monomials. Acta Arith, 2000, 92(3): 195–213

[6]

CaoX D, ZhaiW G. On the distribution of square-free numbers of the form [nc](II). Acta Math Sinica (Chin Ser), 2008, 51(6): 1187–1194 (in Chinese)

[7]

DeshouillersJ M. Sur la repartition des mombers [nc]dans les progressions arithmetiques. C R Acad Sci Paris Śer A, 1973, 277: 647–650

[8]

GrahamS W, KolesnikG. Van der Corput’s Method of Exponential Sums. London Math Soc Lecture Note Ser, 126. Cambridge: Cambridge Univ Press, 1991

[9]

Heath-BrownD R. The Pjatecki˘ı-˘Sapiro prime number theorem. J Number Theory, 1983, 16(2): 242–266

[10]

Piatetski-ShapiroI I. On the distribution of prime numbers in sequences of the form [f(m)]. Mat Sb (N S), 1953, 33(75)(3): 559–566 (in Russian)

[11]

RiegerG J. Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific J Math, 1978, 78(1): 241–242

[12]

RivatJ, WuJ. Prime numbers of the form [nc]. Glasg Math J, 2001, 43: 237–254

[13]

RobertO, SargosP. Three-dimensional exponential sums with monomials. J Reine Angew Math, 2006, 591: 1–20

[14]

StuxI E. Distribution of squarefree integers in non-linear sequences. Pacific J Math, 1975, 59(2): 577–584

[15]

VaalerJ D. Some extremal functions in Fourier analysis. Bull Amer Math Soc, 1985, 12(2): 183–216

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (155KB)

713

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/