Distribution of cube-free numbers with form [nc]

Min ZHANG, Jinjiang LI

PDF(155 KB)
PDF(155 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1515-1525. DOI: 10.1007/s11464-017-0652-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Distribution of cube-free numbers with form [nc]

Author information +
History +

Abstract

We prove that there are infinite cube-free numbers of the form [nc] for any fixed real number c ∈ (1, 11/6).

Keywords

Cube-free number / exponential sum / asymptotic formula

Cite this article

Download citation ▾
Min ZHANG, Jinjiang LI. Distribution of cube-free numbers with form [nc]. Front. Math. China, 2017, 12(6): 1515‒1525 https://doi.org/10.1007/s11464-017-0652-1

References

[1]
BakerR C, BamksWD, BrüdernJ, ShparlinskiI E, WeingartnerA J. Piatetski-Shapiro sequences. Acta Arith, 2013, 157(1): 37–68
CrossRef Google scholar
[2]
BalogA. On a variant of the Piatetski-Shapiro prime number theorem. Groupe de Travail en Théorie Analytique et Elementaire des Nombres 1987–1988. Publications Mathématiques Orsay 89-01. Orsay: Univ de Paris XI, 1989, 3–11
[3]
BurievK. Additive Problems with Prime Numbers. Thesis. Moscow: Moscow Univ, 1989 (in Russian)
[4]
CaoX D, ZhaiW G. The distribution of square-free numbers of the form [nc]. J Théor Nombres Bordeaux, 1998, 10(2): 287–299
CrossRef Google scholar
[5]
CaoX D, ZhaiW G. Multiple exponential sums with monomials. Acta Arith, 2000, 92(3): 195–213
[6]
CaoX D, ZhaiW G. On the distribution of square-free numbers of the form [nc](II). Acta Math Sinica (Chin Ser), 2008, 51(6): 1187–1194 (in Chinese)
[7]
DeshouillersJ M. Sur la repartition des mombers [nc]dans les progressions arithmetiques. C R Acad Sci Paris Śer A, 1973, 277: 647–650
[8]
GrahamS W, KolesnikG. Van der Corput’s Method of Exponential Sums. London Math Soc Lecture Note Ser, 126. Cambridge: Cambridge Univ Press, 1991
CrossRef Google scholar
[9]
Heath-BrownD R. The Pjatecki˘ı-˘Sapiro prime number theorem. J Number Theory, 1983, 16(2): 242–266
CrossRef Google scholar
[10]
Piatetski-ShapiroI I. On the distribution of prime numbers in sequences of the form [f(m)]. Mat Sb (N S), 1953, 33(75)(3): 559–566 (in Russian)
[11]
RiegerG J. Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific J Math, 1978, 78(1): 241–242
CrossRef Google scholar
[12]
RivatJ, WuJ. Prime numbers of the form [nc]. Glasg Math J, 2001, 43: 237–254
CrossRef Google scholar
[13]
RobertO, SargosP. Three-dimensional exponential sums with monomials. J Reine Angew Math, 2006, 591: 1–20
CrossRef Google scholar
[14]
StuxI E. Distribution of squarefree integers in non-linear sequences. Pacific J Math, 1975, 59(2): 577–584
CrossRef Google scholar
[15]
VaalerJ D. Some extremal functions in Fourier analysis. Bull Amer Math Soc, 1985, 12(2): 183–216

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/