Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

Hao WEN

PDF(180 KB)
PDF(180 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1469-1481. DOI: 10.1007/s11464-017-0650-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

Author information +
History +

Abstract

For a holomorphic function f defined on a strongly pseudo-convex domain in n such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator τf:+τf. We will give an asymptotic estimate of the corresponding harmonic forms as τ tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.

Keywords

Asymptotic estimate / residue pairing

Cite this article

Download citation ▾
Hao WEN. Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition. Front. Math. China, 2017, 12(6): 1469‒1481 https://doi.org/10.1007/s11464-017-0650-3

References

[1]
BismutJ M,LebeauG. Complex immersions and Quillen metrics.Publ Math Inst Hautes ′Etudes Sci, 1991, 74: 1–291
[2]
ChangK C, LiuJ. A cohomology complex for manifolds with boundary. TopolMethods Nonlinear Anal, 1995, 5(2): 325–340
CrossRef Google scholar
[3]
FanH J. Schr¨odinger equations, deformation theory and tt ∗-geometry. arXiv: 1107.1290
[4]
FollandG B, KohnJ J. The Neumann Problem for the Cauchy-Riemann Complex. Princeton: Princeton Univ Press and Univ of Tokyo Press, 1972
[5]
LiC Z, LiS, SaitoK. Primitive forms via polyvector fields.arXiv: 1311.1659
[6]
WenH, FanH J. A twisted ∂f-Neumann problem and Toeplitz n-tuples from singularity theory. Manuscripta Math (to appear)
[7]
WittenE. Supersymmetry and Morse theory. J Differential Geom, 1982, 17(4): 661–692
CrossRef Google scholar
[8]
ZhangW P. Lectures on Chern-Weil Theory and Witten Deformations. Singapore: World Scientific Publishing Co Inc, 2001
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(180 KB)

Accesses

Citations

Detail

Sections
Recommended

/