Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

Hao WEN

Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1469 -1481.

PDF (180KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1469 -1481. DOI: 10.1007/s11464-017-0650-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

Author information +
History +
PDF (180KB)

Abstract

For a holomorphic function f defined on a strongly pseudo-convex domain in n such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator τf:+τf. We will give an asymptotic estimate of the corresponding harmonic forms as τ tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.

Keywords

Asymptotic estimate / residue pairing

Cite this article

Download citation ▾
Hao WEN. Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition. Front. Math. China, 2017, 12(6): 1469-1481 DOI:10.1007/s11464-017-0650-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BismutJ M,LebeauG. Complex immersions and Quillen metrics.Publ Math Inst Hautes ′Etudes Sci, 1991, 74: 1–291

[2]

ChangK C, LiuJ. A cohomology complex for manifolds with boundary. TopolMethods Nonlinear Anal, 1995, 5(2): 325–340

[3]

FanH J. Schr¨odinger equations, deformation theory and tt ∗-geometry. arXiv: 1107.1290

[4]

FollandG B, KohnJ J. The Neumann Problem for the Cauchy-Riemann Complex. Princeton: Princeton Univ Press and Univ of Tokyo Press, 1972

[5]

LiC Z, LiS, SaitoK. Primitive forms via polyvector fields.arXiv: 1311.1659

[6]

WenH, FanH J. A twisted ∂f-Neumann problem and Toeplitz n-tuples from singularity theory. Manuscripta Math (to appear)

[7]

WittenE. Supersymmetry and Morse theory. J Differential Geom, 1982, 17(4): 661–692

[8]

ZhangW P. Lectures on Chern-Weil Theory and Witten Deformations. Singapore: World Scientific Publishing Co Inc, 2001

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (180KB)

955

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/