Neighbor sum distinguishing total chromatic number of K4-minor free graph

Hongjie SONG, Changqing XU

PDF(165 KB)
PDF(165 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 937-947. DOI: 10.1007/s11464-017-0649-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Neighbor sum distinguishing total chromatic number of K4-minor free graph

Author information +
History +

Abstract

A k-total coloring of a graph G is a mapping φ: V (G) ∪ E(G) →{1, 2, . . . , k} such that no two adjacent or incident elements in V (G) ∪ E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v. We say that φ is a k-neighbor sum distinguishing total coloring of G if f(u) ≠ f(v) for each edge uvE(G). Denote XΣ''(G) the smallest value k in such a coloring of G. Pilśniak andWoźniak conjectured that for any simple graph with maximum degree Δ(G), XΣ''(G)Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K4-minor free graph G with Δ(G)≥5, XΣ''(G)=Δ(G)+1 if G contains no two adjacent Δ-vertices, otherwise, XΣ''(G)=Δ(G)+2.

Keywords

Neighbor sum distinguishing total coloring / Combinatorial Nullstellensatz / K4-minor free graph

Cite this article

Download citation ▾
Hongjie SONG, Changqing XU. Neighbor sum distinguishing total chromatic number of K4-minor free graph. Front. Math. China, 2017, 12(4): 937‒947 https://doi.org/10.1007/s11464-017-0649-9

References

[1]
AlonN. Combinatorial Nullstellensatz.Combin Probab Comput, 1999, 8: 7–29
CrossRef Google scholar
[2]
BondyJ, MurtyU. Graph Theory with Applications.New York: North-Holland, 1976
CrossRef Google scholar
[3]
ChengX, HuangD, WangG, WuJ. Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ.Discrete Appl Math, 2015, 190-191: 34–41
CrossRef Google scholar
[4]
DingL, WangG, YanG. Neighbour sum distinguishing total colorings via the Combinatorial Nullstellensatz.Sci China Math, 2014, 57(9): 1875–1882
CrossRef Google scholar
[5]
DongA, WangG. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree.Acta Math Sin (Engl Ser), 2014, 30(4): 703–709
CrossRef Google scholar
[6]
LiH, DingL, LiuB, WangG. Neighbor sum distinguishing total colorings of planar graphs.J Comb Optim, 2015, 30(3): 675–688
CrossRef Google scholar
[7]
LiH, LiuB, WangG. Neighbor sum distinguishing total colorings of K4-minor free graphs.Front Math China, 2013, 8(6): 1351–1366
CrossRef Google scholar
[8]
PilśniakM, WoźniakM. On the adjacent-vertex-distinguishing index by sums in total proper colorings.http://www.ii.ui.edu.pl/preMD/index.php, 2011
[9]
PrzybyloJ. Neighbour sum distinguishing total colorings via the Combinatorial Nullstellensatz.Discrete Appl Math, 2016, 202: 163–173
CrossRef Google scholar
[10]
QuC, WangG, WuJ, YuX. On the neighbour sum distinguishing total coloring of planar graphs.Theoret Comput Sci, 2016, 609: 162–170
CrossRef Google scholar
[11]
QuC, WangG, YanG, YuX. Neighbor sum distinguishing total choosability of planar graphs.J Comb Optim, 2016, 32(3): 906–916
CrossRef Google scholar
[12]
WangJ, MaQ, HanX. Neighbor sum distinguishing total colorings of triangle free planar graphs.Acta Math Sin (Engl Ser), 2015, 31(2): 216–224
CrossRef Google scholar
[13]
WangJ, MaQ, HanX, WangX. A proper total coloring distinguishing adjacent vertices by sums of planar graphs without intersecting triangles.J Comb Optim, 2016, 32(2): 626–638
CrossRef Google scholar
[14]
YaoJ, ShaoZ, XuC. Neighbor sum distinguishing total choosability of graphs with Δ = 3.Adv Math (China), 2016, 45(3): 343–348
[15]
YaoJ, XuC. Neighbour sum distinguishing total coloring of graphs with maximum degree 3 or 4.J Shandong Univ Nat Sci, 2015, 50(2): 9–13
[16]
YaoJ, YuX, WangG, XuC. Neighbour sum (set) distinguishing total choosability of d-degenerate graphs.Graphs Combin, 2016, 32: 1611–1620
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(165 KB)

Accesses

Citations

Detail

Sections
Recommended

/