Finite dimensional characteristic functions of Brownian rough path

Xi GENG, Zhongmin QIAN

PDF(207 KB)
PDF(207 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 859-877. DOI: 10.1007/s11464-017-0648-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite dimensional characteristic functions of Brownian rough path

Author information +
History +

Abstract

The Brownian rough path is the canonical lifting of Brownian motion to the free nilpotent Lie group of order 2. Equivalently, it is a process taking values in the algebra of Lie polynomials of degree 2, which is described explicitly by the Brownian motion coupled with its area process. The aim of this article is to compute the finite dimensional characteristic functions of the Brownian rough path in d and obtain an explicit formula for the case when d = 2.

Keywords

Brownian rough paths / finite dimensional characteristic functions / Riccati system

Cite this article

Download citation ▾
Xi GENG, Zhongmin QIAN. Finite dimensional characteristic functions of Brownian rough path. Front. Math. China, 2017, 12(4): 859‒877 https://doi.org/10.1007/s11464-017-0648-x

References

[1]
FrizP, VictoirN. Multidimensional Stochastic Processes as Rough Paths. Cambridge: Cambridge Univ Press, 2010
CrossRef Google scholar
[2]
GaveauB. Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math, 1977, 139(1): 95–153
CrossRef Google scholar
[3]
HaraK, IkedaN. Quadratic Wiener functionals and dynamics on Grassmannians. Bull Sci Math, 2001, 125(6): 481–528
CrossRef Google scholar
[4]
HelmesK, SchwaneA. Lévy’s stochastic area formula in higher dimensions.J Funct Anal, 1983, 54(2): 177–192
CrossRef Google scholar
[5]
HidaT. Quadratic functionals of Brownian motion. J Multivariate Anal, 1971, 1(1): 58–69
CrossRef Google scholar
[6]
IkedaN, KusuokaS, ManabeS. Lévy’s stochastic area formula for Gaussian processes. Comm Pure Appl Math, 1994, 47(3): 329–360
CrossRef Google scholar
[7]
IkedaN, ManabeS. Asymptotic formulae for stochastic oscillatory integrals. In: Elworthy K D, Ikeda N, eds. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics. Pitman Res Notes Math Ser, 284. Boston: Pitman, 1993, 136–155
[8]
LevinD, WildonM. A combinatorial method for calculating the moments of Lévy area. Trans Amer Math Soc, 2008, 360(12): 6695–6709
CrossRef Google scholar
[9]
LevinJ. On the matrix Riccati equation. Proc Amer Math Soc, 1959, 10(4): 519–524
CrossRef Google scholar
[10]
LévyP. Le mouvement brownien plan. Amer J Math, 1940, 62: 487–550
CrossRef Google scholar
[11]
LyonsT. Differential equations driven by rough signals. Rev Mat Iberoam, 1998, 14(2): 215–310
CrossRef Google scholar
[12]
LyonsT, QianZ. System Control and Rough Paths. Oxford: Oxford Univ Press, 2002
CrossRef Google scholar
[13]
ReidW T. A matrix differential equation of Riccati type. Amer J Math, 1946, 68: 237–246
CrossRef Google scholar
[14]
ReidW T. Riccati Differential Equations. New York: Academic Press, 1972
[15]
SipiläinenE M. A Pathwise View of Solutions of Stochastic Differential Equations. Ph D Thesis. University of Edinburgh, 1993

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(207 KB)

Accesses

Citations

Detail

Sections
Recommended

/