Path Aalgebras of positively graded quivers

Hao SU

PDF(196 KB)
PDF(196 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 173-185. DOI: 10.1007/s11464-017-0647-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Path Aalgebras of positively graded quivers

Author information +
History +

Abstract

Let A be a path A-algebra over a positively graded quiver Q. We prove that the derived category of A is triangulated equivalent to the derived category of kQ, which is viewed as a DG algebra with trivial differential. The main technique used in the proof is Koszul duality for DG algebras.

Keywords

A-algebras / Koszul dual / DG-algebras

Cite this article

Download citation ▾
Hao SU. Path Aalgebras of positively graded quivers. Front. Math. China, 2018, 13(1): 173‒185 https://doi.org/10.1007/s11464-017-0647-y

References

[1]
Félix Y, Halperin S, Thomas J C. Rational Homotopy Theory. New York: Springer-Verlag, 2001
CrossRef Google scholar
[2]
He J W, Lu D M. Higher Koszul algebras and A-infinity algebras. J Algebra, 2005, 293(2): 335–362
CrossRef Google scholar
[3]
Kadeishvili T V. The algebraic structure in the homology of an A(∞)-algebra. Soobshch Akad Nauk Gruzin SSR, 1982, 108(2): 249–252
[4]
Keller B. Deriving DG categories. Ann Sci Éc Norm Supér (4), 1994, 27(1): 63–102
[5]
Keller B. Introduction to A-infinity algebras and modules. Homology, Homotopy Appl, 2001, 3(1): 1–35
CrossRef Google scholar
[6]
Lefevre-Hasegawa K. Sur les A∞-catégories. Thèse de doctorat, Université Paris XII, 2005, http://www.math.jussieu.fr/˜keller/lefevre/publ.html
[7]
Loday J L, Vallette B. Algebraic operads. Heidelberg: Springer, 2012
CrossRef Google scholar
[8]
Lu D M, Palmieri J H, Wu Q S, Zhang J J. A∞-algebras for ring theorists. Algebra Colloq, 2004, 11(1): 91–128
[9]
Lu D M, Palmieri J H, Wu Q S, Zhang J J. Koszul equivalences in A∞-algebras. New York J Math, 2008, 14: 325–378
[10]
Lunts V A. Formality of DG algebras (after Kaledin). J Algebra, 2010, 323(4): 878–898
CrossRef Google scholar
[11]
Stasheff J D. Homotopy associativity of H-spaces. I. Trans Amer Math Soc, 1963, 108: 275–292
CrossRef Google scholar
[12]
Stasheff J D. Homotopy associativity of H-spaces. II. Trans Amer Math Soc, 1963, 108: 293–312

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/