Finite groups with permutable Hall subgroups

Xia YIN , Nanying YANG

Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1265 -1275.

PDF (157KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1265 -1275. DOI: 10.1007/s11464-017-0641-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite groups with permutable Hall subgroups

Author information +
History +
PDF (157KB)

Abstract

Let σ={σi|iI} be a partition of the set of all primes P, and let G be a finite group. A set H of subgroups of G is said to be a complete Hallσ-set of G if every member 1 of H is a Hall σi-subgroup of G for somei ∈ I and H contains exactly one Hall σi-subgroup of G for every i such that σiπ(G)φ. In this paper, we study the structure of G under the assuming that some subgroups of G permutes with all members of H .

Keywords

Finite group / Hall subgroup / complete Hall σ-set / permutable subgroup / supersoluble group

Cite this article

Download citation ▾
Xia YIN, Nanying YANG. Finite groups with permutable Hall subgroups. Front. Math. China, 2017, 12(5): 1265-1275 DOI:10.1007/s11464-017-0641-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AsaadM, HelielA A. On permutable subgroups of finite groups. Arch Math, 2003, 80(2): 113–118

[2]

Ballester-BolinchesA, Esteban-RomeroR, AsaadM. Products of Finite Groups. Berlin: Walter de Gruyter, 2010

[3]

DoerkK, HawkesT. Finite Soluble Groups. Berlin: Walter de Gruyter, 1992

[4]

GorensteinD. Finite Groups. New York: Harper & Row Publishers, 1968

[5]

GriessR, SchmidP. The Frattini module. Arch Math, 1978, 30(1): 256–266

[6]

GuoW. The Theory of Classes of Groups. Beijing/Dordrecht: Science Press/Kluwer Academic Publishers, 2000

[7]

GuoW, SkibaA N. On Π-quasinormal subgroups of finite groups. Monatsh Math,

[8]

HuppertB. Zur Sylowstruktur aufl¨osbarer gruppen. Arch Math, 1961, 12: 161–169

[9]

HuppertB. Zur Sylowstruktur auflösbarer gruppen, II.Arch Math, 1964, 15: 251–257

[10]

HuppertB. Endliche Gruppen I. Berlin: Springer-Verlag, 1967

[11]

HuppertB, BlackburnN. Finite Groups III. Berlin: Springer-Verlag, 1982

[12]

KnyaginaB N, MonakhovV S. On π'-properties of finite groups possessing a Hall π-subgroup. Sib Math J, 2011, 52(2): 297–309

[13]

SkibaA N. On the F-hypercentre and the intersection of all F-maximal subgroups of a finite group. J Pure Appl Algebra, 2012, 216(4): 789–799

[14]

SkibaA N. On σ-subnormal and σ-permutable subgroups of finite groups. J Algebra, 2015, 436: 1–16

[15]

SkibaA N. On some results in the theory of finite partially soluble groups. Commun Math Stat,2016, 4(3): 281–309

[16]

SkibaA N. A generalization of a Hall theorem. J Algebra Appl, 2016, 15(4): 1650085 (13 pp).

[17]

TyutyanovV N. On the Hall conjecture. Ukra¨ın Mat Zh, 2002, 54(7): 981–990 (in Russian)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (157KB)

857

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/