Convergence of ADMM for multi-block nonconvex separable optimization models

Ke GUO, Deren HAN, David Z. W. WANG, Tingting WU

PDF(236 KB)
PDF(236 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1139-1162. DOI: 10.1007/s11464-017-0631-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Convergence of ADMM for multi-block nonconvex separable optimization models

Author information +
History +

Abstract

For solving minimization problems whose objective function is the sum of two functions without coupled variables and the constrained function is linear, the alternating direction method of multipliers (ADMM) has exhibited its efficiency and its convergence is well understood. When either the involved number of separable functions is more than two, or there is a nonconvex function, ADMM or its direct extended version may not converge. In this paper, we consider the multi-block separable optimization problems with linear constraints and absence of convexity of the involved component functions. Under the assumption that the associated function satisfies the Kurdyka- Lojasiewicz inequality, we prove that any cluster point of the iterative sequence generated by ADMM is a critical point, under the mild condition that the penalty parameter is sufficiently large. We also present some sufficient conditions guaranteeing the sublinear and linear rate of convergence of the algorithm.

Keywords

Nonconvex optimization / separable structure / alternating direction method of multipliers (ADMM) / Kurdyka-Lojasiewicz inequality

Cite this article

Download citation ▾
Ke GUO, Deren HAN, David Z. W. WANG, Tingting WU. Convergence of ADMM for multi-block nonconvex separable optimization models. Front. Math. China, 2017, 12(5): 1139‒1162 https://doi.org/10.1007/s11464-017-0631-6

References

[1]
AttouchH, BolteJ. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features.Math Program, 2009, 116: 5–16
CrossRef Google scholar
[2]
AttouchH, BolteJ, RedontP, SoubeyranA. Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality.Math Oper Res, 2010, 35: 438–457
CrossRef Google scholar
[3]
AttouchH, BolteJ, SvaiterB F. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods.Math Program, 2013, 137: 91–129
CrossRef Google scholar
[4]
BoleyD. Local linear convergence of ADMM on quadratic or linear programs.SIAM J Optim, 2013, 23: 2183–2207
CrossRef Google scholar
[5]
BolteJ, DaniilidisA, LewisA. The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems.SIAM J Optim, 2007, 17: 1205–1223
CrossRef Google scholar
[6]
BolteJ, DaniilidisA, LewisA, ShiotaM. Clarke subgradients of stratifiable functions.SIAM J Optim, 2007, 18: 556–572
CrossRef Google scholar
[7]
BolteJ, SabachS, TeboulleM. Proximal alternating linearized minimization for nonconvex and nonsmooth problem.Math Program, 2014, 146: 459–494
CrossRef Google scholar
[8]
CaiX J, HanD R, YuanX M. The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex.Comput Optim Appl, 2017, 66: 39–73
CrossRef Google scholar
[9]
ChenC H, HeB S, YeY Y, YuanX M. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent.Math Program, 2016, 155: 57–79
CrossRef Google scholar
[10]
DuB, WangD Z W. Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters—A linear complementarity system approach.Transportation Research Part E: Logistics and Transportation Review, 2014, 71: 58–81
CrossRef Google scholar
[11]
GabayD. Applications of the method of multipliers to variational inequalities. In: Fortin M, Glowinski R, eds. Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. Amsterdam: North-Holland, 1983, 299–331
CrossRef Google scholar
[12]
GabayD, MercierB. A dual algorithm for the solution of nonlinear variational problems via finite element approximations.Comput Math Appl, 1976, 2: 17–40
CrossRef Google scholar
[13]
GlowinskiR, MarroccoA. Approximation par éléments finis d’ordre un et résolution par pénalisation dualité d’une classe de probl`emes non linéaires.RAIRO, Analyse numérique, 1975, 9(2): 41–76
[14]
GuoK, HanD R,WuT T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints.Int J Comput Math, 2016, DOI: 10.1080/00207160.2016.1227432
CrossRef Google scholar
[15]
HanD R, YuanX M. A note on the alternating direction method of multipliers.J Optim Theory Appl, 2012, 155: 227–238
CrossRef Google scholar
[16]
HanD R, YuanX M. Local linear convergence of the alternating direction method of multipliers for quadratic programs.SIAM J Numer Anal, 2013, 51: 3446–3457
CrossRef Google scholar
[17]
HanD R, YuanX M, ZhangW X. An augmented-Lagrangian-based parallel splitting method for separable convex programming with applications to image processing.Math Comp, 2014, 83: 2263–2291
CrossRef Google scholar
[18]
HeB S, TaoM, YuanX M. Alternating direction method with Gaussian back substitution for separable convex programming.SIAM J Optim, 2012, 22: 313–340
CrossRef Google scholar
[19]
HeB S, TaoM, YuanX M. Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming.Preprint
[20]
HeB S, YuanX M. On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method.SIAM J Numer Anal, 2012, 50: 700–709
CrossRef Google scholar
[21]
HongM, LuoZ Q. On the linear convergence of alternating direction method of multipliers.Math Program, 2016, DOI: 10.1007/s10107-016-1034-2
CrossRef Google scholar
[22]
HongM, LuoZ Q, RazaviyaynM. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems.SIAM J Optim, 2016, 26: 337–364
CrossRef Google scholar
[23]
KurdykaK. On gradients of functions definable in o-minimal structures.Ann Inst Fourier (Grenoble), 1998, 48: 769–783
CrossRef Google scholar
[24]
LiG, PongT K. Global convergence of splitting methods for nonconvex composite optimization.SIAM J Optim, 2015, 25: 2434–2460
CrossRef Google scholar
[25]
LiM, SunD F, TohK C. A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block.Asia-Pac J Oper Res, 2015, 32: 1550024
CrossRef Google scholar
[26]
LojasiewiczS. Une propriété topologique des sous-ensembles analytiques réels.Les équations aux dérivées partielles, 1963, 117: 87–89
[27]
MordukhovichB. Variational Analysis and Generalized Differentiation, I. Basic Theory.Grundlehren Math Wiss, Vol 330. Berlin: Springer, 2006
[28]
NesterovY. Introductory Lectures on Convex Optimization: A Basic Course.Boston: Kluwer Academic Publishers, 2004
CrossRef Google scholar
[29]
RockafellarR T. Convex Analysis.Princeton Univ Press, 2015
[30]
RockafellarR T, WetsR J B. Variational An alysis.Berlin: Springer, 1998
CrossRef Google scholar
[31]
WangD Z W, XuL L. Equilibrium trip scheduling in single bottleneck traffic flows considering multi-class travellers and uncertainty—a complementarity formulation.Transportmetrica A: Transport Science, 2016, 12(4): 297–312
[32]
WenZ W, YangC, LiuX, MarchesiniS. Alternating direction methods for classical and ptychographic phase retrieval.Inverse Problems, 2012, 28: 115010
CrossRef Google scholar
[33]
YangL, PongT K, ChenX J. Alternating direction method of multipliers for nonconvex background/foreground extraction.2015, arXiv: 1506.07029
[34]
YangW H, HanD R. Linear convergence of alternating direction method of multipliers for a class of convex optimization problems.SIAM J Numer Anal, 2016, 54: 625–640
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(236 KB)

Accesses

Citations

Detail

Sections
Recommended

/