Some q-inequalities for Hausdorff operators

Jiuhua GUO, Fayou ZHAO

PDF(136 KB)
PDF(136 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 879-889. DOI: 10.1007/s11464-017-0622-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Some q-inequalities for Hausdorff operators

Author information +
History +

Abstract

We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form

+0(+0ϕ(t)tfxtdqt)pdqxCϕb0fp(t)dqt.
As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.

Keywords

Sharp constant / Hausdorff operator / Hilbert operator / q-inequality

Cite this article

Download citation ▾
Jiuhua GUO, Fayou ZHAO. Some q-inequalities for Hausdorff operators. Front. Math. China, 2017, 12(4): 879‒889 https://doi.org/10.1007/s11464-017-0622-7

References

[1]
BangerezakoG. Variational calculus on q-nonuniform lattices. J Math Anal Appl, 2005, 306: 161–179
CrossRef Google scholar
[2]
ChenJ, FanD, LiJ. Hausdorff operators on function spaces. Chin Ann Math Ser B, 2012, 33(4): 537–556
CrossRef Google scholar
[3]
ErnstT. A new notation for q-calculus and a new q-Taylor formula. UUDM Report, 1999, 25
[4]
ErnstT. A Comprehensive Treatment of q-Calculus. Basel: Birkhäuser, 2012
CrossRef Google scholar
[5]
EulerL. Methodus generalis summandi progressiones. Commentarii academiae Scientiarum Petropolitanae, 1732-1733, 6: 68–97
[6]
EulerL. Inventio summae cuiusque seriei ex dato termino generali. Commentarii academiae Scientiarum Petropolitanae, 1736, 8: 9–22
[7]
ExtonH. q-hypergeometric Functions and Applications. New York: Halstead Press, 1983
[8]
HardyG H, LittlewoodJ E, PólyaG. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952
[9]
JacksonF H. On q-definite integrals. Quart J Pure Appl Math, 1910, 41: 193–203
[10]
JacksonF H. On q-difference equations. Amer J Math, 1910, 32: 305–314
CrossRef Google scholar
[11]
JacobiC G J. Fundamenta Nova Theoriae Functionum Ellipticarum. Cambridge: Cambridge Univ Press, 2012 (in Latin)
CrossRef Google scholar
[12]
KacV, CheungP. Quantum Calculus. New York: Springer-Verlag, 2002
CrossRef Google scholar
[13]
LernerA K, LiflyandE. Multidimensional Hausdorff operators on the real Hardy spaces. J Aust Math Soc, 2007, 83: 79–86
CrossRef Google scholar
[14]
LiflyandE. Open problems on Hausdorff operators. In: Complex Analysis and Potential Theory, Proceedings of the Conference Satellite to ICM 2006, Istanbul, Turkey. 2006, 280–284
[15]
LiflyandE, MiyachiA. Boundedness of the Hausdorff operators in Hp spaces, 0<p<1. Studia Math, 2009, 194: 279–292
CrossRef Google scholar
[16]
LiflyandE, MóreczF. The Hausdorff operator is bounded on real H1 space. Proc Amer Math Soc, 2000, 128: 1391–1396
CrossRef Google scholar
[17]
MaligrandaL, OinarovR, PerssonL E. On Hardy q-inequalities. Czechoslovak Math J, 2014, 64: 659–682
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(136 KB)

Accesses

Citations

Detail

Sections
Recommended

/