PDF
(136KB)
Abstract
We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form
As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.
Keywords
Sharp constant
/
Hausdorff operator
/
Hilbert operator
/
q-inequality
Cite this article
Download citation ▾
Jiuhua GUO, Fayou ZHAO.
Some q-inequalities for Hausdorff operators.
Front. Math. China, 2017, 12(4): 879-889 DOI:10.1007/s11464-017-0622-7
| [1] |
BangerezakoG. Variational calculus on q-nonuniform lattices. J Math Anal Appl, 2005, 306: 161–179
|
| [2] |
ChenJ, FanD, LiJ. Hausdorff operators on function spaces. Chin Ann Math Ser B, 2012, 33(4): 537–556
|
| [3] |
ErnstT. A new notation for q-calculus and a new q-Taylor formula. UUDM Report, 1999, 25
|
| [4] |
ErnstT. A Comprehensive Treatment of q-Calculus. Basel: Birkhäuser, 2012
|
| [5] |
EulerL. Methodus generalis summandi progressiones. Commentarii academiae Scientiarum Petropolitanae, 1732-1733, 6: 68–97
|
| [6] |
EulerL. Inventio summae cuiusque seriei ex dato termino generali. Commentarii academiae Scientiarum Petropolitanae, 1736, 8: 9–22
|
| [7] |
ExtonH. q-hypergeometric Functions and Applications. New York: Halstead Press, 1983
|
| [8] |
HardyG H, LittlewoodJ E, PólyaG. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952
|
| [9] |
JacksonF H. On q-definite integrals. Quart J Pure Appl Math, 1910, 41: 193–203
|
| [10] |
JacksonF H. On q-difference equations. Amer J Math, 1910, 32: 305–314
|
| [11] |
JacobiC G J. Fundamenta Nova Theoriae Functionum Ellipticarum. Cambridge: Cambridge Univ Press, 2012 (in Latin)
|
| [12] |
KacV, CheungP. Quantum Calculus. New York: Springer-Verlag, 2002
|
| [13] |
LernerA K, LiflyandE. Multidimensional Hausdorff operators on the real Hardy spaces. J Aust Math Soc, 2007, 83: 79–86
|
| [14] |
LiflyandE. Open problems on Hausdorff operators. In: Complex Analysis and Potential Theory, Proceedings of the Conference Satellite to ICM 2006, Istanbul, Turkey. 2006, 280–284
|
| [15] |
LiflyandE, MiyachiA. Boundedness of the Hausdorff operators in Hp spaces, 0<p<1. Studia Math, 2009, 194: 279–292
|
| [16] |
LiflyandE, MóreczF. The Hausdorff operator is bounded on real H1 space. Proc Amer Math Soc, 2000, 128: 1391–1396
|
| [17] |
MaligrandaL, OinarovR, PerssonL E. On Hardy q-inequalities. Czechoslovak Math J, 2014, 64: 659–682
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg