Some q-inequalities for Hausdorff operators

Jiuhua GUO , Fayou ZHAO

Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 879 -889.

PDF (136KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 879 -889. DOI: 10.1007/s11464-017-0622-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Some q-inequalities for Hausdorff operators

Author information +
History +
PDF (136KB)

Abstract

We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form

+0(+0ϕ(t)tfxtdqt)pdqxCϕb0fp(t)dqt.
As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.

Keywords

Sharp constant / Hausdorff operator / Hilbert operator / q-inequality

Cite this article

Download citation ▾
Jiuhua GUO, Fayou ZHAO. Some q-inequalities for Hausdorff operators. Front. Math. China, 2017, 12(4): 879-889 DOI:10.1007/s11464-017-0622-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BangerezakoG. Variational calculus on q-nonuniform lattices. J Math Anal Appl, 2005, 306: 161–179

[2]

ChenJ, FanD, LiJ. Hausdorff operators on function spaces. Chin Ann Math Ser B, 2012, 33(4): 537–556

[3]

ErnstT. A new notation for q-calculus and a new q-Taylor formula. UUDM Report, 1999, 25

[4]

ErnstT. A Comprehensive Treatment of q-Calculus. Basel: Birkhäuser, 2012

[5]

EulerL. Methodus generalis summandi progressiones. Commentarii academiae Scientiarum Petropolitanae, 1732-1733, 6: 68–97

[6]

EulerL. Inventio summae cuiusque seriei ex dato termino generali. Commentarii academiae Scientiarum Petropolitanae, 1736, 8: 9–22

[7]

ExtonH. q-hypergeometric Functions and Applications. New York: Halstead Press, 1983

[8]

HardyG H, LittlewoodJ E, PólyaG. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1952

[9]

JacksonF H. On q-definite integrals. Quart J Pure Appl Math, 1910, 41: 193–203

[10]

JacksonF H. On q-difference equations. Amer J Math, 1910, 32: 305–314

[11]

JacobiC G J. Fundamenta Nova Theoriae Functionum Ellipticarum. Cambridge: Cambridge Univ Press, 2012 (in Latin)

[12]

KacV, CheungP. Quantum Calculus. New York: Springer-Verlag, 2002

[13]

LernerA K, LiflyandE. Multidimensional Hausdorff operators on the real Hardy spaces. J Aust Math Soc, 2007, 83: 79–86

[14]

LiflyandE. Open problems on Hausdorff operators. In: Complex Analysis and Potential Theory, Proceedings of the Conference Satellite to ICM 2006, Istanbul, Turkey. 2006, 280–284

[15]

LiflyandE, MiyachiA. Boundedness of the Hausdorff operators in Hp spaces, 0<p<1. Studia Math, 2009, 194: 279–292

[16]

LiflyandE, MóreczF. The Hausdorff operator is bounded on real H1 space. Proc Amer Math Soc, 2000, 128: 1391–1396

[17]

MaligrandaL, OinarovR, PerssonL E. On Hardy q-inequalities. Czechoslovak Math J, 2014, 64: 659–682

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (136KB)

1095

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/