
Spectral square moments of a resonance sum for Maass forms
Nathan SALAZAR, Yangbo YE
Front. Math. China ›› 2017, Vol. 12 ›› Issue (5) : 1183-1200.
Spectral square moments of a resonance sum for Maass forms
Let fbe a Maass cusp form for
Cusp form / Maass form / Fourier coefficient of cusp form / Kuznetsov trace formula / resonance sum / first derivative test / weighted stationary phase
[1] |
BatemanH. Tables of Integral Transforms.New York: McGraw-Hill, 1954
|
[2] |
BlomerV, KhanR, YoungM. Distribution of mass of holomorphic cusp forms.Duke Math J, 2013, 162(14): 2609–2644
CrossRef
Google scholar
|
[3] |
CzarneckiK. Resonance sums for Rankin–Selberg products of Maass cusp forms.J Number Theory, 2016, 163: 359–374
CrossRef
Google scholar
|
[4] |
Ernvall-HytönenA M. On certain exponential sums related to GL(3) cusp forms.C R Math Acad Sci Paris, 2010, 348: 5–8
CrossRef
Google scholar
|
[5] |
Ernvall-HytönenA M, JääsaariJ, VesalainenE V. Resonances and Ω-results for exponential sums related to Maass forms for SL(n, Z).J Number Theory, 2015, 153: 135–157
CrossRef
Google scholar
|
[6] |
HafnerJ L. Some remarks on odd Maass wave forms (and a correction to: Zeros of L-functions attached to Maass forms [Math Z, 1985, 190(1): 113–128] by Epstein, C., Hafner, J. L., Sarnak, P.). Math Z, 1987, 196(1): 129–132
CrossRef
Google scholar
|
[7] |
HuxleyM N. Area, Lattice Points, and Exponential Sums.London Math Soc Monogr New Ser, Vol 13. Oxford: Clarendon Press, 1996
|
[8] |
IwaniecH. Introduction to the Spectral Theory of Automorphic Forms.Bibl Rev Mat Iberoamericana. Madrid, 1995
|
[9] |
IwaniecH, KowalskiE. Analytic Number Theory.Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 1997
|
[10] |
IwaniecH, LuoW Z, SarnakP. Low lying zeros of families of L-functions.Publ Math Inst Hautes Études Sci, 2000, 91: 55–131
CrossRef
Google scholar
|
[11] |
KaczorowskiJ, PerelliA. On the structure of the Selberg class VI: non-linear twists.Acta Arith, 2005, 116: 315–341
CrossRef
Google scholar
|
[12] |
KuznetsovN V. Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture.Sums of Kloosterman sums. Math USSR Sbornik, 1981, 29: 299–342
CrossRef
Google scholar
|
[13] |
LauY-K, LiuJ Y, YeY B.Subconvexity bounds for Rankin-Selberg L-functions for congruence subgroups.J Number Theory, 2006, 121: 204–223
CrossRef
Google scholar
|
[14] |
LauY-K, LiuJ Y, YeY B. A new bound k23+ε for Rankin-Selberg L-functions for Hecke congruence subgroups.Int Math Res Pap, 2006, Article ID 35090, 78pp
|
[15] |
LiX Q. Bounds for GL(2)×GL(3) L-functions and GL(3) L-functions.Ann of Math, 2011, 173(1): 301–336
CrossRef
Google scholar
|
[16] |
LiuJ Y, YeY B. Subconvexity for Rankin-Selberg L-functions of Maass forms.Geom Funct Anal, 2002, 12: 1296–1323
CrossRef
Google scholar
|
[17] |
LiuJ Y, YeY B. Petersson and Kuznetsov trace formulas. In: Lie Groups and Automorphic Forms. AMS/IP Stud Adv Math, Vol 37. Providence: Amer Math Soc, 2006, 147–168
CrossRef
Google scholar
|
[18] |
McKeeM, SunH W, YeY B. Weighted stationary phase of higher orders.Front Math China, 2017, 12(3): 675–702
CrossRef
Google scholar
|
[19] |
MichelP. Analytic number theory and families of automorphic L-functions. In: Sarnak P, Shahidi F, eds. Automorphic Forms and Applications. IAS/Park City Math Ser, Vol 12. Providence: Amer Math Soc and Inst Adv Study, 2007, 179–295
CrossRef
Google scholar
|
[20] |
MillerS D, SchmidW. The highly oscillatory behavior of automorphic distributions for SL(2).Lett Math Phys, 2004, 69: 265–286
CrossRef
Google scholar
|
[21] |
RenX M, YeY B. Resonance between automorphic forms and exponential functions.Sci China Math, 2010, 53(9): 2463–2472
CrossRef
Google scholar
|
[22] |
RenX M, YeY B. Asymptotic Voronoi’s summation formulas and their duality for SL3(Z).In: Kanemitsu S, Li H Z, Liu J Y, eds. Number Theory: Arithmetic in Shangri-La—Proceedings of the 6th China-Japan Seminar on Number Theory held in Shanghai Jiaotong University, August 15–17, 2011. Ser on Number Theory and Its Appl, Vol 8. Singapore: World Scientific, 2012, 213–236
|
[23] |
RenX M, YeY B. Sums of Fourier coefficients of a Maass form for SL3(X) twisted by exponential functions.Forum Math, 2014, 26(1): 221–238
CrossRef
Google scholar
|
[24] |
RenX M, YeY B. Resonance and rapid decay of exponential sums of Fourier coefficients of a Maass form for GLm(Z).Sci China Math, 2015, 58(10): 2105–2124
CrossRef
Google scholar
|
[25] |
RenX M, YeY B. Resonance of automorphic forms for GL(3).Trans Amer Math Soc, 2015, 367(3): 2137–2157
CrossRef
Google scholar
|
[26] |
RenX M, YeY B. Hyper-Kloosterman sums of different moduli and their applications to automorphic forms for SLm(Z).Taiwanese J Math, 2016, 20(6): 1251–1274
CrossRef
Google scholar
|
[27] |
SarnakP. Estimates for Rankin-Selberg L-functions and quantum unique ergodicity.J Funct Anal, 2001, 184: 419–453
CrossRef
Google scholar
|
[28] |
SavalaP. Computing the Laplace eigenvalue and level for Maass cusp forms.J Number Theory, 2017, 173: 1–22
CrossRef
Google scholar
|
[29] |
SunQ F. On cusp form coefficients in nonlinear exponential sums.Quart J Math, 2010, 61(3): 363–372
CrossRef
Google scholar
|
[30] |
SunQ F, WuY Y. Exponential sums involving Maass forms.Front Math China, 2014, 9(6): 1349–1366
CrossRef
Google scholar
|
[31] |
WolffT H. Lectures on Harmonic Analysis.Edited by Laba I, Shubin C. Univ Lecture Ser, Vol 29. Providence: Amer Math Soc, 2003
CrossRef
Google scholar
|
/
〈 |
|
〉 |