Pentavalent vertex-transitive diameter two graphs

Wei JIN

PDF(95 KB)
PDF(95 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 377-388. DOI: 10.1007/s11464-016-0617-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Pentavalent vertex-transitive diameter two graphs

Author information +
History +

Abstract

We classify the family of pentavalent vertex-transitive graphs Γ with diameter 2. Suppose that the automorphism group of Γ is transitive on the set of ordered distance 2 vertex pairs. Then we show that either Γ is distance-transitive or Γ is one of C8¯,K5K2,C5[K2],2C4¯, or K3K4 .

Keywords

vertex-transitive graph / diameter / automorphism group

Cite this article

Download citation ▾
Wei JIN. Pentavalent vertex-transitive diameter two graphs. Front. Math. China, 2017, 12(2): 377‒388 https://doi.org/10.1007/s11464-016-0617-9

References

[1]
Amarra C, Giudici M, Praeger C E. Quotient-complete arc-transitive graphs. European J Combin, 2012, 33: 1857–1881
CrossRef Google scholar
[2]
Amarra C, Giudici M, Praeger C E. Symmetric diameter two graphs with affine-type vertex-quasiprimitive automorphism group. Des Codes Cryptogr, 2013, 68: 127–139
CrossRef Google scholar
[3]
Brouwer A E, Cohen A M, Neumaier A. Distance-Regular Graphs. Berlin: Springer-Verlag, 1989
CrossRef Google scholar
[4]
Cameron P J. Permutation Groups. London Math Soc Stud Texts, Vol 45. Cambridge: Cambridge Univ Press, 1999
CrossRef Google scholar
[5]
Cheng Y, Oxley J. On weakly symmetric graphs of order twice a prime. J Combin Theory Ser B, 1987, 42: 196–211
CrossRef Google scholar
[6]
Devillers A. A classi_cation of _nite partial linear spaces with a rank 3 automorphism group of grid type. European J Combin, 2008, 29: 268–272
CrossRef Google scholar
[7]
Devillers A, Giudici M, Li C H, Pearce G, Praeger C E. On imprimitive rank 3 permutation groups. J Lond Math Soc, 2011, 84: 649–669
CrossRef Google scholar
[8]
Devillers A, Jin W, Li C H, Praeger C E. Local 2-geodesic transitivity and clique graphs. J Combin Theory Ser A, 2013, 120: 500–508
CrossRef Google scholar
[9]
Devillers A, Jin W, Li C H, Praeger C E. On normal 2-geodesic transitive Cayley graphs. J Algebraic Combin, 2014, 39: 903–918
CrossRef Google scholar
[10]
0. Dixon J D, Mortimer B. Permutation Groups. New York: Springer, 1996
CrossRef Google scholar
[11]
Gorenstein D. Finite Simple Groups|An Introduction to Their Classi_cation. New York: Plenum Press, 1982
[12]
Hestenes M D, Higman D G. Rank 3 groups and strongly regular graphs. SIAM-AMS Proc, 1971, 4: 141–159
[13]
Jin W. Vertex-transitive graphs of diameter 2. Preprint
[14]
Kov_acs I. Classifying arc-transitive circulants. J Algebraic Combin, 2004, 20: 353–358
CrossRef Google scholar
[15]
Kwak J H, Oh J M. One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer. Acta Math Sin (Engl Ser), 2006, 22: 1305–1320
CrossRef Google scholar
[16]
Li C H. Permutation groups with a cyclic regular subgroup and arc transitive circulants. J Algebraic Combin, 2005, 21: 131–136
CrossRef Google scholar
[17]
Li C H, Pan J M. Finite 2-arc-transitive abelian Cayley graphs. European J Combin, 2008, 29: 148–158
CrossRef Google scholar
[18]
Mckay B, Praeger C E. Vertex-transitive graphs which are not Cayley graphs. J Aust Math Soc (A), 1994, 56: 53–63
CrossRef Google scholar
[19]
Morris J, Praeger C E, Spiga P. Strongly regular edge-transitive graphs. Ars Math Contemp, 2009, 2: 137–155
[20]
Wang R J, Xu M Y. A classi_cation of symmetric graphs of order 3p:J Combin Theory Ser B, 1993, 58: 197–216
CrossRef Google scholar
[21]
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(95 KB)

Accesses

Citations

Detail

Sections
Recommended

/