A class of simple Lie algebras attached to unit forms

Jinjing CHEN , Zhengxin CHEN

Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 787 -803.

PDF (213KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 787 -803. DOI: 10.1007/s11464-016-0616-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A class of simple Lie algebras attached to unit forms

Author information +
History +
PDF (213KB)

Abstract

Let n≥3.The complex Lie algebra, which is attached to a unit form q(x1,x2,,xn)=i=1nxi2+1ijn(1)jixixj and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type An,and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.

Keywords

Nakayama algebras / finite-dimensional simple Lie algebras / Ringel-Hall Lie algebras

Cite this article

Download citation ▾
Jinjing CHEN, Zhengxin CHEN. A class of simple Lie algebras attached to unit forms. Front. Math. China, 2017, 12(4): 787-803 DOI:10.1007/s11464-016-0616-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AsashibaH. Realization of simple Lie algebras via Hall algebras of tame hereditary algebras. J Math Soc Japan, 2004, 56: 889–905

[2]

AsashibaH. Domestic canonical and simple Lie algebras. Math Z, 2008, 259: 713–754

[3]

BarotM, KussinD, LenzingH. The Lie algebra associated to a unit form. J Algebra, 2006, 296: 1–17

[4]

ChenZ. Canonical algebras of type (n1, n2, n3) and Kac-Moody algebras. Comm Algebra, 2014, 42(8): 3297–3324

[5]

ChenZ, LinY. Tubular algebras and affine Kac-Moody algebras. Sci China Ser A, 2007, 50(4): 521–532

[6]

DingM, XiaoJ, XuF. Realizing enveloping algebras via varieties of modules. Acta Math Sin (Engl Ser), 2010, 26: 29–48

[7]

FrenkelI, MalkinA, VybornovM. Affine Lie algebras and tame quiver. Selecta Math, 2001, 7: 1–56

[8]

HappelD. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988

[9]

HappelD, SeidelU. Piecewise hereditary Nakayama algebras. Algebr Represent Theory, 2010, 13: 693–704

[10]

HappelD, ZachariaD. A homological characterization of piecewise hereditary algebras. Math Z, 2008, 260: 177–185

[11]

LinY, PengL. Elliptic Lie algebras and tubular algebras. Adv Math, 2005, 196: 487–530

[12]

PengL. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Proc 9th Inter Conf Representations of Algebra. Beijing: Beijing Normal Univ Press, 2002, 98–108

[13]

PengL, XiaoJ. Root categories and simple Lie algebras. J Algebra, 1997, 198: 19–56

[14]

PengL, XiaoJ. Triangulated categories and Kac-Moody algebras. Invent Math, 2000, 140: 563–603

[15]

PengL, XuM. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024v1

[16]

RiedtmannC. Lie algebras generated by indecomposables. J Algebra, 1997, 198: 19–56

[17]

RingelC M. Hall algebras. Topics in Algebra, Banach Center Publ, 1990, 26: 433–447

[18]

RingelC M. Hall polynominals for the representation-finite hereditary algebras. Adv Math, 1990, 84(2): 137–178

[19]

RingelC M. Lie algebras arising in representation theory. In: Representations of Algebras and Related Topics (Kyoto, 1990). London Math Soc Lecture Note Ser, Vol 168. Cambridge: Cambridge Univ Press, 1992, 284–291

[20]

SerreJ P. Complex Semisimple Lie Algebras. New York: Spinger-Verlag, 1987

[21]

SlodowyP. Beyond Kac-Moody algebras and inside. In: Britten D J, Lemire F W, Moody R V, eds. Lie Algebras and Related Topics. Canad Math Soc Conf Proc, Vol 5. Providence: Amer Math Soc, 1986, 361–371

[22]

XiaoJ, XuF, ZhangG. Derived categories and Lie algebras. arXiv: math/0604564v1

[23]

XuM, PengL. Symmetrizable intersection matrix Lie algebras. Algebra Colloq, 2011, 18(4): 639–646

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (213KB)

778

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/