A class of simple Lie algebras attached to unit forms
Jinjing CHEN, Zhengxin CHEN
A class of simple Lie algebras attached to unit forms
Let n≥3.The complex Lie algebra, which is attached to a unit form and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type ,and realized by the Ringel-Hall Lie algebra of a Nakayama algebra of radical square zero. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.
Nakayama algebras / finite-dimensional simple Lie algebras / Ringel-Hall Lie algebras
[1] |
AsashibaH. Realization of simple Lie algebras via Hall algebras of tame hereditary algebras. J Math Soc Japan, 2004, 56: 889–905
CrossRef
Google scholar
|
[2] |
AsashibaH. Domestic canonical and simple Lie algebras. Math Z, 2008, 259: 713–754
CrossRef
Google scholar
|
[3] |
BarotM, KussinD, LenzingH. The Lie algebra associated to a unit form. J Algebra, 2006, 296: 1–17
CrossRef
Google scholar
|
[4] |
ChenZ. Canonical algebras of type (n1, n2, n3) and Kac-Moody algebras. Comm Algebra, 2014, 42(8): 3297–3324
CrossRef
Google scholar
|
[5] |
ChenZ, LinY. Tubular algebras and affine Kac-Moody algebras. Sci China Ser A, 2007, 50(4): 521–532
CrossRef
Google scholar
|
[6] |
DingM, XiaoJ, XuF. Realizing enveloping algebras via varieties of modules. Acta Math Sin (Engl Ser), 2010, 26: 29–48
CrossRef
Google scholar
|
[7] |
FrenkelI, MalkinA, VybornovM. Affine Lie algebras and tame quiver. Selecta Math, 2001, 7: 1–56
CrossRef
Google scholar
|
[8] |
HappelD. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
CrossRef
Google scholar
|
[9] |
HappelD, SeidelU. Piecewise hereditary Nakayama algebras. Algebr Represent Theory, 2010, 13: 693–704
CrossRef
Google scholar
|
[10] |
HappelD, ZachariaD. A homological characterization of piecewise hereditary algebras. Math Z, 2008, 260: 177–185
CrossRef
Google scholar
|
[11] |
LinY, PengL. Elliptic Lie algebras and tubular algebras. Adv Math, 2005, 196: 487–530
CrossRef
Google scholar
|
[12] |
PengL. Intersection matrix Lie algebras and Ringel-Hall Lie algebras of tilted algebras. In: Proc 9th Inter Conf Representations of Algebra. Beijing: Beijing Normal Univ Press, 2002, 98–108
|
[13] |
PengL, XiaoJ. Root categories and simple Lie algebras. J Algebra, 1997, 198: 19–56
CrossRef
Google scholar
|
[14] |
PengL, XiaoJ. Triangulated categories and Kac-Moody algebras. Invent Math, 2000, 140: 563–603
CrossRef
Google scholar
|
[15] |
PengL, XuM. Symmetrizable intersection matrices and their root systems. arXiv: 0912.1024v1
|
[16] |
RiedtmannC. Lie algebras generated by indecomposables. J Algebra, 1997, 198: 19–56
|
[17] |
RingelC M. Hall algebras. Topics in Algebra, Banach Center Publ, 1990, 26: 433–447
|
[18] |
RingelC M. Hall polynominals for the representation-finite hereditary algebras. Adv Math, 1990, 84(2): 137–178
CrossRef
Google scholar
|
[19] |
RingelC M. Lie algebras arising in representation theory. In: Representations of Algebras and Related Topics (Kyoto, 1990). London Math Soc Lecture Note Ser, Vol 168. Cambridge: Cambridge Univ Press, 1992, 284–291
CrossRef
Google scholar
|
[20] |
SerreJ P. Complex Semisimple Lie Algebras. New York: Spinger-Verlag, 1987
CrossRef
Google scholar
|
[21] |
SlodowyP. Beyond Kac-Moody algebras and inside. In: Britten D J, Lemire F W, Moody R V, eds. Lie Algebras and Related Topics. Canad Math Soc Conf Proc, Vol 5. Providence: Amer Math Soc, 1986, 361–371
|
[22] |
XiaoJ, XuF, ZhangG. Derived categories and Lie algebras. arXiv: math/0604564v1
|
[23] |
XuM, PengL. Symmetrizable intersection matrix Lie algebras. Algebra Colloq, 2011, 18(4): 639–646
CrossRef
Google scholar
|
/
〈 | 〉 |