A class of metrics and foliations on tangent bundle of Finsler manifolds

Hongchuan XIA, Chunping ZHONG

PDF(235 KB)
PDF(235 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 417-439. DOI: 10.1007/s11464-016-0614-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A class of metrics and foliations on tangent bundle of Finsler manifolds

Author information +
History +

Abstract

Let (M,F) be a Finsler manifold, and let TM0 be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of (TM0,G) and study their geometric properties. Next, we use this approach to obtain new characterizations of Finsler manifolds with positive constant flag curvature. We also investigate the relations between Levi-Civita connection, Cartan connection, Vaisman connection, vertical foliation, and Reinhart spaces.

Keywords

Finsler manifold / foliation / constant flag curvature / Vaisman connection

Cite this article

Download citation ▾
Hongchuan XIA, Chunping ZHONG. A class of metrics and foliations on tangent bundle of Finsler manifolds. Front. Math. China, 2017, 12(2): 417‒439 https://doi.org/10.1007/s11464-016-0614-z

References

[1]
Alipour-Fakhri Y, Rezaii M M. The warped Sasaki-Matsumoto metric and bundlelike condition. J Math Phys, 2010, 51(12): 122701
CrossRef Google scholar
[2]
Anastasiei M, Shimada H. Deformation of Finsler metrics. In: Antonelli P L, ed. Finslerian Geometries—A meetings of Minds. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000, 53–66
CrossRef Google scholar
[3]
Attarchi H, Rezaii M M. Cartan spaces and natural foliations on the cotangent bundle. Int J Geom Methods Mod Phys, 2013, 10(3): 1250089
CrossRef Google scholar
[4]
Balan V, Manea A. Leafwise 2-jet cohomology on foliated Finsler manifolds. In: Balkan Society of Geometries Proceeding, Vol 16. Bucharest: Geometry Balkan Press, 2009, 28–41
[5]
Bao D, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry. Grad Texts in Math, Vol 200. New York: Springer-Verlag, 2000
CrossRef Google scholar
[6]
Bejancu A. Tangent bundle and indicatrix bundle of a Finsler manifold. Kodai Math J, 2008, 31: 272–306
CrossRef Google scholar
[7]
Bejancu A, Farran F R. Foliations and Geometric Structures. Dordrecht: Springer, 2006
[8]
Bejancu A, Farran F R. Finsler geometry and natural foliations on the tangent bundle. Rep Math Phys, 2006, 58: 131–146
CrossRef Google scholar
[9]
Hushmandi A B, Rezaii M M. On warped product Finsler spaces of Landsberg type. J Math Phys, 2011, 52(9): 093506
CrossRef Google scholar
[10]
Hushmandi A B, Rezaii M M. On the curvature of warped product Finsler spaces and the Laplacian of the Sasaki-Finsler metrics. J Geom Phys, 2012, 62: 2077–2089
CrossRef Google scholar
[11]
Ida C, Adelina M. A vertical Liouville subfoliation on the cotangent bundle of a Cartan space and some related structures. Int J Geom Methods Mod Phys, 2014, 11(6): 1450063
CrossRef Google scholar
[12]
Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Otsu: Kaiseisha, 1986
[13]
Miron R. Cartan spaces in a new point of view by considering them as duals of Finsler spaces. Tensor (NS), 1987, 46: 330–334
[14]
Miron R. The homogeneous lift to the tangent bundle of a Finsler metric. Publ Math Debrecen, 2000, 57: 445–453
[15]
Peyghan E, Far L N. Foliations and a class of metrics on the tangent bundle. Turkish J Math, 2013, 37: 348–359
[16]
Peyghan E, Taybei A, Zhong C P. Foliations on the tangent bundle of Finsler manifolds. Sci China Math, 2012, 55(3): 647–662
CrossRef Google scholar
[17]
Taybei A, Peyghan E. On a class of Riemannian metrics arising from Finsler structures. C R Acad Sci Paris Ser I, 2011, 349: 319–322
CrossRef Google scholar
[18]
Vaisman I. Cohomology and Differential Forms. New York: Marcel Dekker Inc, 1973
[19]
Yano K, Kon M. Structures on Manifolds. Singapore: World Scientific, 1984

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(235 KB)

Accesses

Citations

Detail

Sections
Recommended

/