Distance domination of generalized de Bruijn and Kautz digraphs

Yanxia DONG, Erfang SHAN, Xiao MIN

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 339-357. DOI: 10.1007/s11464-016-0607-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Distance domination of generalized de Bruijn and Kautz digraphs

Author information +
History +

Abstract

Let G = (V,A) be a digraph and k1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V \ D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γk(G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs GB(n, d) and generalized Kautz digraphs GK(n, d) are good candidates for interconnection networks. Denote Δk:=(j=0kdj)1. F. Tian and J. Xu showed that nΔkγk(GB(n,d))n/dk and nΔkγk(GK(n,d))n/dk. In this paper, we prove that every generalized de Bruijn digraph GB(n, d) has the distance kdomination number nΔk or nΔk +1, and the distance k-domination number of every generalized Kautz digraph GK(n, d) bounded above by n/dk1+dk. Additionally, we present various sufficient conditions for γk(GB(n,d))=nΔk and γk(GK(n,d))=nΔk.

Keywords

Combinatorial problems / dominating set / distance dominating set / generalized de Bruijn digraph / generalized Kautz digraph

Cite this article

Download citation ▾
Yanxia DONG, Erfang SHAN, Xiao MIN. Distance domination of generalized de Bruijn and Kautz digraphs. Front. Math. China, 2017, 12(2): 339‒357 https://doi.org/10.1007/s11464-016-0607-y

References

[1]
Araki T. On the k-tuple domination in de Bruijn and Kautz digraphs. Inform Process Lett, 2007, 104: 86–90
CrossRef Google scholar
[2]
Bermond J C, Peyrat C. De Bruijn and Kautz networks: a competitor for the hypercube? In: André F, Verjus J P, eds. Hypercube and Distributed Computers. North-Holland: Elsevier Science Publishers, 1989, 279–293
[3]
Caro Y, Henning M A. Directed domination in oriented graphs. Discrete Appl Math, 2012, 160: 1053–1063
CrossRef Google scholar
[4]
Deng A, Wu Y K. De Bruijn digraphs and affine transformations. European J Combin, 2005, 26: 1191–1206
CrossRef Google scholar
[5]
Dong Y X, Shan E F, Kang L Y. Constructing the minimum dominating sets of generalized de Bruijn digraphs. Discrete Math, 2015, 338: 1501–1508
CrossRef Google scholar
[6]
Du D Z, Hsu D F, Hwang F K, Zhang X M. The Hamiltonian property of generalized de Bruijn digraphs. J Combin Theory Ser B, 1991, 52: 1–8
CrossRef Google scholar
[7]
Ducoffe G. Hamiltonicity of large generalized de Bruijn cycles. Discrete Appl Math, 2013, 161: 2200–2204
CrossRef Google scholar
[8]
Fischermann M, Volkmann L. Graphs having distance n-domination number half their order. Discrete Appl Math, 2002, 120: 97–107
CrossRef Google scholar
[9]
Ghoshal J, Laskar R, Pillone D. Topics on domination in directed graphs, In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. New York: Marcel Dekker, 1998, 401–437
[10]
Hasunuma T, Shibata Y.Counting small cycles in generalized de Bruijn digraphs. Networks, 1997, 29: 39–47
CrossRef Google scholar
[11]
Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs.New York: Marcel Dekker, 1998
[12]
Hosseinabady M, Kakoee M R, Mathew J, Pradhan D K. Low latency and energy efficient scalable architecture for massive NoCs using generalized de Bruijn graph. IEEE Trans on Very Large Scale Integration Systems, 2011, 19: 1469–1480
CrossRef Google scholar
[13]
Imase M, Itoh M. Design to minimize diameter on building-block networks. IEEE Trans Comput, 1981, C-30: 439–442
CrossRef Google scholar
[14]
Imase M, Soneoka T, Okada K. Connectivity of regular directed graphs with small diameters. IEEE Trans Comput, 1985, 34: 267–273
CrossRef Google scholar
[15]
Kikuchi Y, Shibata Y. On the domination numbers of generalized de Bruijn digraphs and generalized Kautz digraphs. Inform Process Lett, 2003, 86: 79–85
CrossRef Google scholar
[16]
Li X, Zhang F. On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graphs. Discrete Math, 1991, 94: 189–197
CrossRef Google scholar
[17]
Lien M Y, Kuo J, Fu H L. On the decycling number of generalized Kautz digraphs. Inform Process Lett, 2015, 115: 209–211
CrossRef Google scholar
[18]
Pan C D, Pan C B. Elementary Number Theory. 2nd ed.Beijing: Beijing Univ Press, 2004 (in Chinese)
[19]
Shan E F, Cheng T C E, Kang L Y. Absorbant of generalized de Bruijn digraphs. Inform Process Lett, 2007, 105: 6–11
CrossRef Google scholar
[20]
Shan E F, Dong Y X. The k-tuple twin domination in generalized de Bruijn and Kautz networks. Comput Math Appl, 2012, 63: 222–227
CrossRef Google scholar
[21]
Shan E F, Dong Y X, Cheng Y K. The twin domination number in generalized de Bruijn digraphs. Inform Process Lett, 2009, 109: 856–860
CrossRef Google scholar
[22]
Shibata Y, Shirahata M, Osawa S. Counting closed walks in generalized de Bruijn graphs. Inform Process Lett, 1994, 49: 135–138
CrossRef Google scholar
[23]
Slater P J. R-dominations in graphs. J Assoc Comput Mach, 1976, 23: 446–460
CrossRef Google scholar
[24]
Sridharan N, Subramanian V S A, Elias M D. Bounds on the distance two-domination number of a graph. Graphs Combin, 2002, 18: 667–675
CrossRef Google scholar
[25]
Tian F, Xu J. Distance domination numbers of generalized de Bruijn and Kautz digraphs. OR Trans, 2006, 10: 88–94
[26]
Wang Y L. Efficient twin domination in generalized de Bruijn digraphs. Discrete Math, 2015, 338: 36–40
CrossRef Google scholar
[27]
Xu J M. Combinatorial Network Theory.Beijing: Science Press, 2007, 112–131 (in Chinese)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/