Koszulity and Koszul modules of dual extension algebras
Huanhuan LI, Yunge XU
Koszulity and Koszul modules of dual extension algebras
Let Aand Bbe algebras, and let T be the dual extension algebra of A and B. We provide a different method to prove that Tis Koszul if and only if both A and B are Koszul. Furthermore, we prove that an algebra is Koszul if and only if one of its iterated dual extension algebras is Koszul, if and only if all its iterated dual extension algebras are Koszul. Finally, we give a necessary and sufficient condition for a dual extension algebra to have the property that all linearly presented modules are Koszul modules, which provides an effective way to construct algebras with such a property.
Dual extension / linearly presented / Koszul algebra / Koszul module
[1] |
AquinoR M, GreenE L. On modules with linear presentations over Koszul algebras. Comm Algebra, 2005, 33(1): 19–36
CrossRef
Google scholar
|
[2] |
AuslanderM, ReitenI, SmaløS O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1995
CrossRef
Google scholar
|
[3] |
BackelinJ, FrobergR. Veronese subrings, Koszul algebras and rings with linear resolutions. Rev Roumaine Math Pures Appl, 1985, 30: 85–97
|
[4] |
BeilinsonA, GinszburgV, SoergelW. Koszul duality patterns in representation theory. J Amer Math Soc, 1996, 9: 473–525
CrossRef
Google scholar
|
[5] |
BianN, YeY, ZhangP. Generalized d-Koszul modules. Math Res Lett, 2011, 18(2): 191–200
CrossRef
Google scholar
|
[6] |
ClineE, ParshallB, ScottL. Finite dimensional algebras and highest weight categories. J Reine Angew Math, 1988, 391: 85–99
|
[7] |
DengB M. A Construction of algebras with arbitrary finite global dimensions. Comm Algebra, 1998, 26(9): 2959–2965
CrossRef
Google scholar
|
[8] |
FrobergR. Koszul algebras. In: Advances in Commutative Ring Theory (Fez, 1997). Lecture Notes in Pure and Appl Math, Vol 205. New York: Dekker, 1999, 337–350
|
[9] |
GreenE L. Remarks on projective resolutions. In: Dlab V, Gabriel P, eds. Representation Theory II: Proceedings of the Second International Conference on Representations of Algebras, Ottawa, Carleton University, August 13–25, 1979. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 259–279
CrossRef
Google scholar
|
[10] |
GreenE L, MarcosE, ZhangP. Koszul modules and modules with linear presentations. Comm Algebra, 2003, 31(6): 2745–2770
CrossRef
Google scholar
|
[11] |
GreenE L, Martinez-VillaR. Koszul and Yoneda algebras. In: Representation Theory of Algebras (Cocoyoc, 1994). CMS Conference Proceedings, Vol 18. Providence: Amer Math Soc, 1996, 247–297
|
[12] |
GreenE L, Martinez-VillaR, ReitenI, SolbergF, ZachariaD. On modules with linear presentations. J Algebra, 1998, 205: 578–604
CrossRef
Google scholar
|
[13] |
HappelD. A family of algebras with two simple modules and Fibonacci numbers. Arch Math, 1991, 57: 133–139
CrossRef
Google scholar
|
[14] |
ManinY I. Some remarks on Koszul algebras and quantum groups. Ann Inst Fourier, 1987, 37: 191–205
CrossRef
Google scholar
|
[15] |
Martinez-VillaR, Montano-BermudezG. Triangular matrix and Koszul algebras. Int J Algebra, 2007, 1(10): 441–467
CrossRef
Google scholar
|
[16] |
Membrillo-Hern�andezF H. Quasi-hereditary algebras with two simple modules and Fibonacci numbers. Comm Algebra, 1994, 22(11): 4499–4509
CrossRef
Google scholar
|
[17] |
PolishchukA, PositselskiL. Quadratic Algebras. Univ Lecture Ser, Vol 37. Providence: Amer Math Soc, 2006
|
[18] |
PriddyS B. Koszul resolutions. Trans Amer Math Soc, 1970, 152: 39–60
CrossRef
Google scholar
|
[19] |
XiC C. Quasi-hereditary algebras with a duality. J Reine Angew Math, 1994, 449: 201–215
|
[20] |
XiC C. Global dimensions of dual extension algebras. Manuscripta Math, 1995, 88(1): 25–31
CrossRef
Google scholar
|
[21] |
ZhaoD, HanY. Koszul algebras and finite Galois coverings. Sci China, Ser A, 2009, 52(10): 2145–2153
CrossRef
Google scholar
|
/
〈 | 〉 |