Modular derivations for extensions of Poisson algebras

Shengqiang WANG

Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 209 -218.

PDF (147KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 209 -218. DOI: 10.1007/s11464-016-0598-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Modular derivations for extensions of Poisson algebras

Author information +
History +
PDF (147KB)

Abstract

We compute explicitly the modular derivations for Poisson-Ore extensions and tensor products of Poisson algebras.

Keywords

Poisson algebra / Frobenius Poisson algebra / modular derivation / tensor Poisson algebra

Cite this article

Download citation ▾
Shengqiang WANG. Modular derivations for extensions of Poisson algebras. Front. Math. China, 2017, 12(1): 209-218 DOI:10.1007/s11464-016-0598-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ciccoli N. Poisson Ore extensions. In: Coen S, ed. Seminari di Geometria dell’Universit′a di Bologna 2005–2009. 2011

[2]

Dolgushev V. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228

[3]

Huebschmann J. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159

[4]

Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216

[5]

Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Grundlehren Math Wiss, Vol 347. Berlin: Springer, 2013

[6]

Lichnerowicz A. Les varieties de Poisson et leurs algebres de Lie associees. J Differential Geom, 1977, 12: 253–300 (in French)

[7]

Luo J, Wang S-Q, Wu Q-S. Twisted Poincar′e duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505

[8]

Oh S Q. Poisson polynomial rings. Comm Algebra, 2006, 34: 1265–1277

[9]

Weibel C. An Introduction to Homological Algebra. Cambridge: Cambridge Univ Press, 1994

[10]

Weinstein A. Lecture on Symplectic Manifolds. CBMS Reg Conf Ser Math, No 29. Providence: Amer Math Soc, 1977

[11]

Zhu C, Van Oystaeyen F, Zhang Y-H. On (co)homology of Frobenius Poisson algebras. J K-Theory, 2014, 14: 371–386

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (147KB)

729

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/