Modular derivations for extensions of Poisson algebras

Shengqiang WANG

PDF(147 KB)
PDF(147 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 209-218. DOI: 10.1007/s11464-016-0598-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Modular derivations for extensions of Poisson algebras

Author information +
History +

Abstract

We compute explicitly the modular derivations for Poisson-Ore extensions and tensor products of Poisson algebras.

Keywords

Poisson algebra / Frobenius Poisson algebra / modular derivation / tensor Poisson algebra

Cite this article

Download citation ▾
Shengqiang WANG. Modular derivations for extensions of Poisson algebras. Front. Math. China, 2017, 12(1): 209‒218 https://doi.org/10.1007/s11464-016-0598-8

References

[1]
Ciccoli N. Poisson Ore extensions. In: Coen S, ed. Seminari di Geometria dell’Universit′a di Bologna 2005–2009. 2011
[2]
Dolgushev V. The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math, 2009, 14: 199–228
CrossRef Google scholar
[3]
Huebschmann J. Duality for Lie-Rinehart algebras and the modular class. J Reine Angew Math, 1999, 510: 103–159
CrossRef Google scholar
[4]
Kontsevich M. Deformation quantization of Poisson manifolds. Lett Math Phys, 2003, 66: 157–216
CrossRef Google scholar
[5]
Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Grundlehren Math Wiss, Vol 347. Berlin: Springer, 2013
CrossRef Google scholar
[6]
Lichnerowicz A. Les varieties de Poisson et leurs algebres de Lie associees. J Differential Geom, 1977, 12: 253–300 (in French)
[7]
Luo J, Wang S-Q, Wu Q-S. Twisted Poincar′e duality between Poisson homology and Poisson cohomology. J Algebra, 2015, 442: 484–505
CrossRef Google scholar
[8]
Oh S Q. Poisson polynomial rings. Comm Algebra, 2006, 34: 1265–1277
CrossRef Google scholar
[9]
Weibel C. An Introduction to Homological Algebra. Cambridge: Cambridge Univ Press, 1994
CrossRef Google scholar
[10]
Weinstein A. Lecture on Symplectic Manifolds. CBMS Reg Conf Ser Math, No 29. Providence: Amer Math Soc, 1977
CrossRef Google scholar
[11]
Zhu C, Van Oystaeyen F, Zhang Y-H. On (co)homology of Frobenius Poisson algebras. J K-Theory, 2014, 14: 371–386
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(147 KB)

Accesses

Citations

Detail

Sections
Recommended

/