Generalization of CS condition

Liang SHEN , Wenxi LI

Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 199 -208.

PDF (147KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 199 -208. DOI: 10.1007/s11464-016-0596-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalization of CS condition

Author information +
History +
PDF (147KB)

Abstract

Let R be an associative ring with identity. An R-module M is called an NCS module if C(M)S(M)={0}, where C(M) and S(M) denote the set of all closed submodules and the set of all small submodules of M, respectively. It is clear that the NCS condition is a generalization of the well-known CS condition. Properties of the NCS conditions of modules and rings are explored in this article. In the end, it is proved that a ring R is right Σ-CS if and only if R is right perfect and right countably Σ-NCS. Recall that a ring R is called right Σ-CS if every direct sum of copies of RR is a CS module. And a ring R is called right countably Σ-NCS if every direct sum of countable copies of RR is an NCS module.

Keywords

NCS modules / NCS rings / CS rings / Σ-CS rings / countably Σ-NCS

Cite this article

Download citation ▾
Liang SHEN, Wenxi LI. Generalization of CS condition. Front. Math. China, 2017, 12(1): 199-208 DOI:10.1007/s11464-016-0596-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson F W, Fuller K R. Rings and Categories of Modules. Grad Texts in Math, Vol 13. New York: Springer-Verlag, 1992

[2]

Chatters A W, Hajarnavis C R. Rings in which every complement right ideal is a direct summand. Q J Math, 1977, 28: 61–80

[3]

Chen J L, Li W X. On artiness of right CF rings. Comm Algebra, 2004, 32(11): 4485–4494

[4]

Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Front Math. Basel: Birkhäuser-Verlag, 2006

[5]

Dung N V, Huynh D V, Smith P F, Wisbauer R. Extending Modules. Pitman Research Notes Math Ser, 313. Essex: Longman Scientific & Technical, 1994

[6]

Faith C, Huynh D V. When self-injective rings are QF: a report on a problem. J Algebra Appl, 2002, 1(1): 75–105

[7]

Gómez Pardo J L, Guil Asensio P A. Essential embedding of cyclic modules in projectives. Trans Amer Math Soc, 1997, 349(11): 4343–4353

[8]

Gómez Pardo J L, Guil Asensio P A. Torsionless modules and rings with finite essential socle. In: Dikranjan D, Salce L, eds. Abelian Groups, Module Theory, and Topology. Lect Notes Pure Appl Math, Vol 201. New York: Marcel Dekker, 1998, 261–278

[9]

Goodearl K R. Ring Theory: Nonsingular Rings and Modules. Monogr Pure Appl Math, Vol 33. New York: Dekker, 1976

[10]

Lam T Y. Lectures on Modules and Rings. Grad Texts in Math, Vol 189. New York: Springer-Verlag, 1998

[11]

Lam T Y. A First Course in Noncommutative Rings. Grad Texts in Math, Vol 131. New York: Springer-Verlag, 2001

[12]

Mohamed S H, Müller B J. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, Vol 147. Cambridge: Cambridge Univ Press, 1990

[13]

Nicholson W K, Yousif M F. Quasi-Frobenius Rings. Cambridge Tracts in Math, Vol 158. Cambridge: Cambridge Univ Press, 2003

[14]

Shen L. An approach to the Faith-Menal conjecture. Int Electron J Algebra, 2007, 1(1): 46–50

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (147KB)

761

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/