Strongly Gorenstein graded modules

Lixin MAO

Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 157 -176.

PDF (190KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 157 -176. DOI: 10.1007/s11464-016-0595-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Strongly Gorenstein graded modules

Author information +
History +
PDF (190KB)

Abstract

Let R be a graded ring. We define and study strongly Gorenstein gr-projective, gr-injective, and gr-flat modules. Some connections among these modules are discussed. We also explore the relations between the graded and the ungraded strongly Gorenstein modules.

Keywords

Strongly Gorenstein gr-projective module / strongly Gorenstein gr-injective module / strongly Gorenstein gr-flat module

Cite this article

Download citation ▾
Lixin MAO. Strongly Gorenstein graded modules. Front. Math. China, 2017, 12(1): 157-176 DOI:10.1007/s11464-016-0595-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asensio M J, Lopez Ramos J A, Torrecillas B. Gorenstein gr-injective and gr-projective modules. Comm Algebra, 1998, 26: 225–240

[2]

Asensio M J, Lopez Ramos J A, Torrecillas B. Gorenstein gr-flat modules. Comm Algebra, 1998, 26: 3195–3209

[3]

Asensio M J, Lopez Ramos J A, Torrecillas B. FP-gr-injective modules and gr-FC rings. Lect Notes Pure Appl Math, 2000, 1–12

[4]

Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969

[5]

Bennis D, Mahdou N. Strongly Gorenstein projective, injective and flat modules. J Pure Appl Algebra, 2007, 210: 437–445

[6]

Ding N Q, Chen J L. The flat dimensions of injective modules. Manuscripta Math, 1993, 78: 165–177

[7]

Ding N Q, Chen J L. Coherent rings with finite self-FP-injective dimension. Comm Algebra, 1996, 24: 2963–2980

[8]

Enochs E E, Jenda O M G. Gorenstein injective and Gorenstein projective modules. Math Z, 1995, 220: 611–633

[9]

Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin: Walter de Gruyter, 2000

[10]

Enochs E E, Jenda O M G, Torrecillas B. Gorenstein flat modules. Nanjing Univ J Math Biquarterly, 1993, 10: 1–9

[11]

Enochs E E, Lóopez-Ramos J A. Gorenstein Flat Modules. New York: Nova Science Publishers, Inc, 2001

[12]

Garcíıa Rozas J R, Ĺopez-Ramos J A, Torrecillas B. On the existence of flat covers in R-gr. Comm Algebra, 2001, 29: 3341–3349

[13]

Hermann M, Ikeda S, Orbanz U. Equimultiplicity and Blowing Up. New York: Springer, 1988

[14]

Nastasescu C, Raianu S, Van Oystaeyen F. Modules graded by G-sets. Math Z, 1990, 203: 605–627

[15]

Nastasescu C, Van Oystaeyen F. Graded Ring Theory. North-Holland Math Library, Vol 28. Amsterdam: North-Holland, 1982

[16]

Nastasescu C, Van Oystaeyen F. Methods of Graded Rings. Lecture Notes in Math, Vol 1836. Berlin: Springer-Verlag, 2004

[17]

Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979

[18]

Stenstr�om B. Rings of Quotients. Berlin: Springer-Verlag, 1975

[19]

Yang X Y, Liu Z K. Strongly Gorenstein projective, injective and flat modules. J Algebra, 2008, 320: 2659–2674

[20]

Yang X Y, Liu Z K. FP-gr-injective modules. Math J Okayama Univ, 2011, 53: 83–100

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (190KB)

1209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/