Strongly Gorenstein graded modules

Lixin MAO

PDF(190 KB)
PDF(190 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 157-176. DOI: 10.1007/s11464-016-0595-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Strongly Gorenstein graded modules

Author information +
History +

Abstract

Let R be a graded ring. We define and study strongly Gorenstein gr-projective, gr-injective, and gr-flat modules. Some connections among these modules are discussed. We also explore the relations between the graded and the ungraded strongly Gorenstein modules.

Keywords

Strongly Gorenstein gr-projective module / strongly Gorenstein gr-injective module / strongly Gorenstein gr-flat module

Cite this article

Download citation ▾
Lixin MAO. Strongly Gorenstein graded modules. Front. Math. China, 2017, 12(1): 157‒176 https://doi.org/10.1007/s11464-016-0595-y

References

[1]
Asensio M J, Lopez Ramos J A, Torrecillas B. Gorenstein gr-injective and gr-projective modules. Comm Algebra, 1998, 26: 225–240
CrossRef Google scholar
[2]
Asensio M J, Lopez Ramos J A, Torrecillas B. Gorenstein gr-flat modules. Comm Algebra, 1998, 26: 3195–3209
CrossRef Google scholar
[3]
Asensio M J, Lopez Ramos J A, Torrecillas B. FP-gr-injective modules and gr-FC rings. Lect Notes Pure Appl Math, 2000, 1–12
[4]
Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969
[5]
Bennis D, Mahdou N. Strongly Gorenstein projective, injective and flat modules. J Pure Appl Algebra, 2007, 210: 437–445
CrossRef Google scholar
[6]
Ding N Q, Chen J L. The flat dimensions of injective modules. Manuscripta Math, 1993, 78: 165–177
CrossRef Google scholar
[7]
Ding N Q, Chen J L. Coherent rings with finite self-FP-injective dimension. Comm Algebra, 1996, 24: 2963–2980
CrossRef Google scholar
[8]
Enochs E E, Jenda O M G. Gorenstein injective and Gorenstein projective modules. Math Z, 1995, 220: 611–633
CrossRef Google scholar
[9]
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin: Walter de Gruyter, 2000
CrossRef Google scholar
[10]
Enochs E E, Jenda O M G, Torrecillas B. Gorenstein flat modules. Nanjing Univ J Math Biquarterly, 1993, 10: 1–9
[11]
Enochs E E, Lóopez-Ramos J A. Gorenstein Flat Modules. New York: Nova Science Publishers, Inc, 2001
[12]
Garcíıa Rozas J R, Ĺopez-Ramos J A, Torrecillas B. On the existence of flat covers in R-gr. Comm Algebra, 2001, 29: 3341–3349
CrossRef Google scholar
[13]
Hermann M, Ikeda S, Orbanz U. Equimultiplicity and Blowing Up. New York: Springer, 1988
CrossRef Google scholar
[14]
Nastasescu C, Raianu S, Van Oystaeyen F. Modules graded by G-sets. Math Z, 1990, 203: 605–627
CrossRef Google scholar
[15]
Nastasescu C, Van Oystaeyen F. Graded Ring Theory. North-Holland Math Library, Vol 28. Amsterdam: North-Holland, 1982
[16]
Nastasescu C, Van Oystaeyen F. Methods of Graded Rings. Lecture Notes in Math, Vol 1836. Berlin: Springer-Verlag, 2004
CrossRef Google scholar
[17]
Rotman J J. An Introduction to Homological Algebra. New York: Academic Press, 1979
[18]
Stenstr�om B. Rings of Quotients. Berlin: Springer-Verlag, 1975
CrossRef Google scholar
[19]
Yang X Y, Liu Z K. Strongly Gorenstein projective, injective and flat modules. J Algebra, 2008, 320: 2659–2674
CrossRef Google scholar
[20]
Yang X Y, Liu Z K. FP-gr-injective modules. Math J Okayama Univ, 2011, 53: 83–100

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(190 KB)

Accesses

Citations

Detail

Sections
Recommended

/