Constructions of derived equivalences for algebras and rings

Changchang XI

PDF(217 KB)
PDF(217 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 1-18. DOI: 10.1007/s11464-016-0593-0
SURVEY ARTICLE
SURVEY ARTICLE

Constructions of derived equivalences for algebras and rings

Author information +
History +

Abstract

In this article, we shall survey some aspects of our recent (or related) constructions of derived equivalences for algebras and rings.

Keywords

Derived equivalence / Frobenius-finite algebra / recollement / stable equivalence / tilting complex / Yoneda algebra

Cite this article

Download citation ▾
Changchang XI. Constructions of derived equivalences for algebras and rings. Front. Math. China, 2017, 12(1): 1‒18 https://doi.org/10.1007/s11464-016-0593-0

References

[1]
Aihara T, Mizuno Y. Classifying tilting complexes over preprojective algebras of Dynkin type. Preprint, 2015, arXiv: 1509.07387
[2]
Al-Nofayee S, Rickard J. Rigidity of tilting complexes and derived equivalences for selfinjective algebras. Preprint, 2013, arXiv: 1311.0504
[3]
Asashiba H. The derived equivalence classification of representation-finite selfinjective algebras. J Algebra, 1999, 214: 182–221
CrossRef Google scholar
[4]
Asashiba H. On a lift of an individual stable equivalence to a standard derived equivalence for representation-finite self-injective algebras. Algebr Represent Theory, 2003, 6: 427–447
CrossRef Google scholar
[5]
Auslander M, Reiten I, Smalo S O. Representation Theory of Artin Algebras. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[6]
Backelin J. On the rates of growth of the homologies of Veronese subrings. In: Roos J-E, ed. Algebra, Algebraic Topology and Their Interactions. Lecture Notes in Math, Vol 1183. Berlin: Springer, 1986, 79–100
CrossRef Google scholar
[7]
Baer D, Geigle W, Lenzing H. The preprojective algebra of a tame hereditary Artin algebra. Comm Algebra, 1987, 15(1-2): 425–457
CrossRef Google scholar
[8]
Barot M, Lenzing H. One-point extensions and derived equivalences. J Algebra, 2003, 264: 1–5
CrossRef Google scholar
[9]
Bazzoni S. Equivalences induced by infinitely generated tilting modules. Proc Amer Math Soc, 2010, 138: 533–544
CrossRef Google scholar
[10]
Beilinson A A. Coherent sheaves on Pn and problems of linear algebra. Funct Anal Appl, 1978, 12: 214–216
CrossRef Google scholar
[11]
Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers. Asterisque, 1982, 100: 5–171
[12]
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Dlab V, Gabriel P, eds. Representation Theory II. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 103–169
CrossRef Google scholar
[13]
Broué M. Isométríes de caractères et équivalences de Morita ou dérivées. Inst Hautes Études Sci Publ Math, 1990, 71: 45–63
CrossRef Google scholar
[14]
Chen H X, Xi C C. Good tilting modules and recollements of derived module categories. Proc Lond Math Soc, 2012, 104: 959–996
CrossRef Google scholar
[15]
Chen H X, Xi C C. Recollements of derived categories, I: Exact contexts. Preprint, 2012, arXiv: 1203.5168
[16]
Chen H X, Xi C C. Good tilting modules and recollements of derived module categories II. Preprint, 2016, arXiv: 1206.0522
[17]
Chen H X, Xi C C. Recollements of derived categories, II: Algebraic K-theory. Preprint, 2012, arXiv: 1212.1879
[18]
Chen H X, Xi C C. Recollements of derived categories, III: Finitistic dimensions. J Lond Math Soc (to appear), arXiv: 1405.5090
[19]
Chen H X, Xi C C. Dominant dimensions, derived equivalences and tilting modules. Israel J Math (to appear), DOI: 10.1007/s11856-016-1327-4, arXiv: 1503.02385
CrossRef Google scholar
[20]
Chen Y P. Derived equivalences in n-angulated categories. Algebr Represent Theory, 2013, 16: 1661–1684
CrossRef Google scholar
[21]
Chen Y P. Derived equivalences between subrings. Comm Algebra, 2014, 42: 4055–4065
CrossRef Google scholar
[22]
Chuang J, Rouquier R. Derived equivalences for symmetric groups and Sl2-categorification. Ann of Math, 2008, 167: 245–298
CrossRef Google scholar
[23]
Cline E, Parshall B, Scott L. Algebraic stratification in representation categories. J Algebra, 1988, 117: 504–521
CrossRef Google scholar
[24]
Dugas A. Tilting mutation of weakly symmetric algebras and stable equivalence. Algebr Represent Theory, 2014, 17: 863–884
CrossRef Google scholar
[25]
Dugas A. A construction of derived equivalent pairs of symmetric algebras. Proc Amer Math Soc, 2015, 143: 2281–2300
CrossRef Google scholar
[26]
Dugger D, Shipley B. K-theory and derived equivalences. Duke Math J, 2004, 124(3): 587–617
CrossRef Google scholar
[27]
Gelfand I M, Ponomarev V A. Model algebras and representations of graphs. Funktsional Anal i Prilozhen, 1979, 13(3): 1–12
CrossRef Google scholar
[28]
Han Y, Qin Y Y. Reducing homological conjectures by n-recollements. Preprint, 2014, arXiv: 1410.3223
[29]
Happel D. Reduction techniques for homological conjectures. Tsukuba J Math, 1993, 17(1): 115–130
[30]
Happel D. Triangulated categories in the representation theory of finite dimensional algebras. Cambridge: Cambridge Univ Press, 1988
CrossRef Google scholar
[31]
Happel D. The Coxeter polynomial for a one point extension algebra. J Algebra, 2009, 321: 2028–2041
CrossRef Google scholar
[32]
Hoshino M, Kato Y. Tilting complexes defined by idempotents. Comm Algebra, 2002, 30: 83–100
CrossRef Google scholar
[33]
Hoshino M, Kato Y. An elementary construction of tilting complexes. J Pure Appl Algebra, 2003, 177: 158–175
CrossRef Google scholar
[34]
Hu W, Koenig S, Xi C C. Derived equivalences from cohomological approximations, and mutations of Yoneda algebras. Proc Roy Soc Edinburgh Sect. A, 2013, 143(3): 589–629
[35]
Hu W, Xi C C. D-split sequences and derived equivalences. Adv Math, 2011, 227: 292–318
CrossRef Google scholar
[36]
Hu W, Xi C C. Derived equivalences for Φ-Auslander-Yoneda algebras. Trans Amer Math Soc, 2013, 365: 589–629
CrossRef Google scholar
[37]
Hu W, Xi C C. Derived equivalences and stable equivalences of Morita type, I. Nagoya Math J, 2010, 200: 107–152
CrossRef Google scholar
[38]
Hu W, Xi C C. Derived equivalences and stable equivalences of Morita type, II. Rev Mat Iberoam (to appear), arXiv: 1412.7301
[39]
Hu W, Xi C C. Derived equivalences constructed from pullback algebras. Preprint, 2015
[40]
Kato Y. On derived equivalent coherent rings. Comm Algebra, 2002, 30(9): 4437–4454
CrossRef Google scholar
[41]
Keller B. Invariance and localization for cyclic homology of DG-algebras. J Pure Appl Algebra, 1998, 123: 223–273
CrossRef Google scholar
[42]
Koenig S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J Pure Appl Algebra, 1991, 73: 211–232
CrossRef Google scholar
[43]
Ladkani S. On derived equivalences of lines, rectangles and triangles. J Lond Math Soc, 2013, 87: 157–176
CrossRef Google scholar
[44]
Lenzing H, Meltzer H. Sheaves on a weighted projective line of genus one, and representations of a tubular algebra. In: Representations of Algebras (Ottawa, ON, 1992). CMS Conf Proc, Vol 14. Providence: Amer Math Soc, 1993, 313–337
[45]
Martinez-Villa R. The stable equivalence for algebras of finite representation type. Comm Algebra, 1985, 13(5): 991–1018
CrossRef Google scholar
[46]
Neeman A. Triangulated Categories. Ann of Math Stud, Vol 148. Princeton and Oxford: Princeton Univ Press, 2001
[47]
Okuyama T. Some examples of derived equivalent blocks of finite groups. Preprint, 1997
[48]
Pan S Y. Transfer of derived equivalences from subalgebras to endomorphism algebras. J Algebra Appl, 2016, 15(6): 1650100 (10 pp)
[49]
Pan S Y, Peng Z. A note on derived equivalences for Φ-Green algebras. Algebr Represent Theory, 2014, 17: 1707–1720
CrossRef Google scholar
[50]
Pan S Y, Xi C C. Finiteness of finitistic dimension is invariant under derived equivalences. J Algebra, 2009, 322: 21–24
CrossRef Google scholar
[51]
Psaroudakis Ch. Homological theory of recollements of abelian categories. J Algebra, 2014, 398: 63–110
CrossRef Google scholar
[52]
Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436–456
CrossRef Google scholar
[53]
Rickard J. Derived categories and stable equivalences. J Pure Appl Algebra, 1989, 64: 303–317
CrossRef Google scholar
[54]
Rickard J. Derived equivalences as derived functors. J Lond Math Soc, 1991, 43: 37–48
CrossRef Google scholar
[55]
Rickard J. The abelian defect group conjecture. In: Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998) Doc Math, Extra Vol II. 1998, 121–128
[56]
Rouquier R. Derived equivalences and finite dimensional algebras. In: International Congress of Mathematicians, Vol II. Zürich: Eur Math Soc, 2006, 191–221
[57]
Verdier J L. Catégories dérivées, etat O. Lecture Notes in Math, Vol 569. Berlin: Springer-Verlag, 1977, 262–311
[58]
Xi C C. Higher algebraic K-groups and D-split sequences. Math Z, 2013, 273: 1025–1052
CrossRef Google scholar
[59]
Zimmermann A. Representation Theory, A Homological Algebra Point of View. Algebr Appl, Vol 19. Cham: Springer International Publishing Switzerland, 2014
[60]
Zvonareva A O. Two-term tilting complexes over Brauer tree algebras. J Math Sci, 2015, 209(4): 568–587
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(217 KB)

Accesses

Citations

Detail

Sections
Recommended

/