Weak rigid monoidal category

Haijun CAO

PDF(178 KB)
PDF(178 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 19-33. DOI: 10.1007/s11464-016-0590-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Weak rigid monoidal category

Author information +
History +

Abstract

We define the right regular dual of an object X in a monoidal category C , and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category C to V ec and every XC has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.

Keywords

Semilattice graded weak Hopf algebra / regular right dual / weak rigid monoidal category

Cite this article

Download citation ▾
Haijun CAO. Weak rigid monoidal category. Front. Math. China, 2017, 12(1): 19‒33 https://doi.org/10.1007/s11464-016-0590-3

References

[1]
Cartier P. A primer of Hopf algebras. In: Cartier P, Julia B, Moussa P, Vanhove P, eds. Frontiers in Number Theory, Physics and Geometry II. Berlin: Springer, 2007, 537–615
CrossRef Google scholar
[2]
Deligne P. Catégories tannakiennes. In: The Grothendieck Festschrift, Vol II. Progr Math, Vol 87. Basel: Birkhäuser, 1990, 111–196
[3]
Deligne P, Milne J. Tannakian categories. In: Lecture Notes in Math, Vol 900. Berlin: Springer, 1982, 101–228
[4]
Drinfield V. Quasi-Hopf algebras. Leningrad Math J, 1989, 1: 1419–1457
[5]
Etingof P, Schiffmann O. Lectures on Quantum Groups.Somerville: International Press, 1980
[6]
Hopf H. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen. Ann of Math, 1941, 42: 22–52
CrossRef Google scholar
[7]
Kelly G. On Mac Lane’s condition for coherence of natural associativities, commutativities, etc. J Algebra, 1964, 1: 397–402
CrossRef Google scholar
[8]
Krein M. A principle of duality for a bicompact group and square block algebra. Dokl Akad Nauk SSSR, 1949, 69: 725–728
[9]
Li F. Weak Hopf algebras and some new solutions of quantum Yang-Baxter equation. J Algebra, 1998, 208: 72–100
CrossRef Google scholar
[10]
Li F, Cao H J. Semilattice graded weak Hopf algebra and its related quantum G-double. J Math Phys, 2005, 46(8): 1–17
CrossRef Google scholar
[11]
Mac Lane S. Natural associativity and commutativity. Rice Univ Studies, 1963, 49(4): 28–46
[12]
Mac Lane S. Categories for the working mathematician. 2nd ed. Grad Texts in Math, Vol 5. Berlin: Springer, 1998
[13]
Majid S. Foundations of Quantum Group Theory.Cambridge: Cambridge Univ Press, 2000
[14]
Saavedra Rivano N. Catégories Tannakiennes. Lecture Notes in Math, Vol 265. Berlin: Springer, 1972
[15]
Tannaka T. Über den Dualitätssatz der nichtkommutativen topologischen Gruppen. Tohoku Math J, 1939, 45: 1–12

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(178 KB)

Accesses

Citations

Detail

Sections
Recommended

/