Weak rigid monoidal category
Haijun CAO
Weak rigid monoidal category
We define the right regular dual of an object X in a monoidal category , and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F, J) is a fiber functor from category to V ec and every X ∈ has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.
Semilattice graded weak Hopf algebra / regular right dual / weak rigid monoidal category
[1] |
Cartier P. A primer of Hopf algebras. In: Cartier P, Julia B, Moussa P, Vanhove P, eds. Frontiers in Number Theory, Physics and Geometry II. Berlin: Springer, 2007, 537–615
CrossRef
Google scholar
|
[2] |
Deligne P. Catégories tannakiennes. In: The Grothendieck Festschrift, Vol II. Progr Math, Vol 87. Basel: Birkhäuser, 1990, 111–196
|
[3] |
Deligne P, Milne J. Tannakian categories. In: Lecture Notes in Math, Vol 900. Berlin: Springer, 1982, 101–228
|
[4] |
Drinfield V. Quasi-Hopf algebras. Leningrad Math J, 1989, 1: 1419–1457
|
[5] |
Etingof P, Schiffmann O. Lectures on Quantum Groups.Somerville: International Press, 1980
|
[6] |
Hopf H. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen. Ann of Math, 1941, 42: 22–52
CrossRef
Google scholar
|
[7] |
Kelly G. On Mac Lane’s condition for coherence of natural associativities, commutativities, etc. J Algebra, 1964, 1: 397–402
CrossRef
Google scholar
|
[8] |
Krein M. A principle of duality for a bicompact group and square block algebra. Dokl Akad Nauk SSSR, 1949, 69: 725–728
|
[9] |
Li F. Weak Hopf algebras and some new solutions of quantum Yang-Baxter equation. J Algebra, 1998, 208: 72–100
CrossRef
Google scholar
|
[10] |
Li F, Cao H J. Semilattice graded weak Hopf algebra and its related quantum G-double. J Math Phys, 2005, 46(8): 1–17
CrossRef
Google scholar
|
[11] |
Mac Lane S. Natural associativity and commutativity. Rice Univ Studies, 1963, 49(4): 28–46
|
[12] |
Mac Lane S. Categories for the working mathematician. 2nd ed. Grad Texts in Math, Vol 5. Berlin: Springer, 1998
|
[13] |
Majid S. Foundations of Quantum Group Theory.Cambridge: Cambridge Univ Press, 2000
|
[14] |
Saavedra Rivano N. Catégories Tannakiennes. Lecture Notes in Math, Vol 265. Berlin: Springer, 1972
|
[15] |
Tannaka T. Über den Dualitätssatz der nichtkommutativen topologischen Gruppen. Tohoku Math J, 1939, 45: 1–12
|
/
〈 | 〉 |