Structure of Abelian rings

Juncheol HAN, Yang LEE, Sangwon PARK

PDF(195 KB)
PDF(195 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 117-134. DOI: 10.1007/s11464-016-0586-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure of Abelian rings

Author information +
History +

Abstract

Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal NJ(R) of R, that R has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.

Keywords

Abelian ring / regular group action / local ring / semiperfect ring / finite ring / Abelian group / idempotent-lifting / complete set of primitive idempotents

Cite this article

Download citation ▾
Juncheol HAN, Yang LEE, Sangwon PARK. Structure of Abelian rings. Front. Math. China, 2017, 12(1): 117‒134 https://doi.org/10.1007/s11464-016-0586-z

References

[1]
Amitsur S A. A general theory of radicals III. Amer J Math, 1954, 76: 126–136
CrossRef Google scholar
[2]
Antoine R. Nilpotent elements and Armendariz rings. J Algebra, 2008, 319: 3128–3140
CrossRef Google scholar
[3]
Cohen J, Koh K. Half-transitive group actions in a compact ring. J Pure Appl Algebra, 1989, 60: 139–153
CrossRef Google scholar
[4]
Goodearl K R. Von Neumann Regular Rings.London: Pitman, 1979
[5]
Goodearl K R, Warfield R B Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge-New York-Port Chester-Melbourne-Sydney: Cambridge Univ Press, 1989
[6]
Grover K R, Khurana D, Singh S. Rings with multiplicative set of primitive idempotents. Comm Algebra, 2009, 37: 2583–2590
CrossRef Google scholar
[7]
Han J, Lee Y, Park S. Semicentral idempotents in a ring. J Korean Math Soc, 2014, 51: 463–472
CrossRef Google scholar
[8]
Han J, Park S. Additive set of idempotents in rings. Comm Algebra, 2012, 40: 3551–3557
CrossRef Google scholar
[9]
Han J, Park S. Rings with a finite number of orbits under the regular action. J Korean Math Soc, 2014, 51: 655–663
CrossRef Google scholar
[10]
Hirano Y, Huynh D V, Park J K. On rings whose prime radical contains all nilpotent elements of index two. Arch Math, 1996, 66: 360–365
CrossRef Google scholar
[11]
Huh C, Kim H K, Lee Y. p.p. rings and generalized p.p. rings. J Pure Appl Algebra, 2002, 167: 37–52
CrossRef Google scholar
[12]
Huh C, Lee Y, Smoktunowicz A. Armendariz rings and semicommutative rings. Comm Algebra, 2002, 30: 751–761
CrossRef Google scholar
[13]
Hwang S U, Jeon Y C, Lee Y. Structure and topological conditions of NI rings. J Algebra, 2006, 302: 186–199
CrossRef Google scholar
[14]
Jeon Y C, Kim H K, Lee Y, Yoon J S. On weak Armendariz rings. Bull Korean Math Soc, 2009, 46: 135–146
CrossRef Google scholar
[15]
Jung D W, Kim N K, Lee Y, Yang S P. Nil-Armendariz rings and upper nilradicals. Internat J Algebra Comput, 2012, 22: 1–13 (1250059)
[16]
Kim N K, Lee Y. Armendariz rings and related rings. J Algebra, 2000, 223: 477–488
CrossRef Google scholar
[17]
Lam T Y. A First Course in Noncommutative Rings.New York: Springer-Verlag, 1991
CrossRef Google scholar
[18]
Lambek J. Lectures on Rings and Modules.London: Blaisdell Publ Co, 1966
[19]
Nicholson W K. Introduction to Abstract Algebra.Boston: PWS, 1998

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(195 KB)

Accesses

Citations

Detail

Sections
Recommended

/