Torus actions, fixed-point formulas, elliptic genera and positive curvature

Anand DESSAI

PDF(363 KB)
PDF(363 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1151-1187. DOI: 10.1007/s11464-016-0583-2
SURVEY ARTICLE
SURVEY ARTICLE

Torus actions, fixed-point formulas, elliptic genera and positive curvature

Author information +
History +

Abstract

We study fixed points of smooth torus actions on closed manifolds using fixed point formulas and equivariant elliptic genera. We also give applications to positively curved Riemannian manifolds with symmetry.

Keywords

Torus actions / fixed point formulas / equivariant indices / elliptic genera / rigidity and vanishing

Cite this article

Download citation ▾
Anand DESSAI. Torus actions, fixed-point formulas, elliptic genera and positive curvature. Front. Math. China, 2016, 11(5): 1151‒1187 https://doi.org/10.1007/s11464-016-0583-2

References

[1]
Allday C, Puppe V. Cohomological Methods in Transformation Groups. Cambridge Stud Adv Math, Vol 32. Cambridge: Cambridge Univ Press, 1993
CrossRef Google scholar
[2]
Amann M, Kennard L. Topological properties of positively curved manifolds with symmetry. Geom Funct Anal, 2014, 24: 1377–1405
CrossRef Google scholar
[3]
Atiyah M F. K-Theory. 2nd ed. Advanced Book Classics. Upper Saddle River: Addison-Wesley, 1989
[4]
Atiyah M F, Bott R. A Lefschetz fixed point formula for elliptic complexes. II. Ann of Math, 1967, 88: 451–491
CrossRef Google scholar
[5]
Atiyah M F, Bott R. The moment map and equivariant cohomology. Topology, 1984, 23: 1–28
CrossRef Google scholar
[6]
Atiyah M F, Bott R, Shapiro A. Clifford modules. Topology, 1964, 3(suppl 1): 3–38
CrossRef Google scholar
[7]
Atiyah M F, Hirzebruch F. Riemann-Roch theorems for differentiable manifolds. Bull Amer Math Soc, 1959, 65: 276–281
CrossRef Google scholar
[8]
Atiyah M F, Hirzebruch F. Vector bundles and homogeneous spaces. In: Proc Sympos Pure Math, Vol III. Providence: Amer Math Soc, 1961, 7–38
CrossRef Google scholar
[9]
Atiyah M F, Hirzebruch F. Spin-Manifolds and group actions. In: Essays on Topology and Related Topics. Memoires dédiés à Georges de Rham. Berlin: Springer, 1970, 18–28
CrossRef Google scholar
[10]
Atiyah M F, Segal G B. The index of elliptic operators: II. Ann of Math, 1968, 87: 531–545
CrossRef Google scholar
[11]
Atiyah M F, Segal G B. Equivariant K-theory and completion. J Differential Geom, 1969, 3: 1–18
[12]
Atiyah M F, Singer I M. The index of elliptic operators: I. Ann of Math, 1968, 87: 484–530
CrossRef Google scholar
[13]
Atiyah M F, Singer I M. The index of elliptic operators: III. Ann of Math, 1968, 87: 546–604
CrossRef Google scholar
[14]
Berline N, Vergne M. Classes caractéristiques équivariantes. Formules de localization en cohomologie équivariante. C R Acad Sci Paris, 1982, 295: 539–541
[15]
Boardman J M. On manifolds with involution. Bull Amer Math Soc, 1967, 73: 136–138
CrossRef Google scholar
[16]
Bochner S. Vector fields and Ricci curvature. Bull Amer Math Soc, 1946, 52: 776–797
CrossRef Google scholar
[17]
Borel A. Seminar on Transformation Groups. Ann of Math Stud, No 46. Princeton: Princeton Univ Press, 1960
[18]
Bott R. Vector fields and characteristic numbers. Michigan Math J, 1967, 14: 231–244
CrossRef Google scholar
[19]
Bott R. A residue formula for holomorphic vector-fields. J Differential Geom, 1967, 1: 311–330
[20]
Bott R, Taubes C H. On the rigidity theorems of Witten. J Amer Math Soc, 1989, 2: 137–186
CrossRef Google scholar
[21]
Bredon G. Introduction to Compact Transformation Groups. New York: Academic Press, 1972
[22]
Conner P E, Floyd E E. Differentiable Periodic Maps. Ergebnisse Series, 33. Berlin: Springer, 1964
[23]
Conner P E, Floyd E E. Maps of odd period. Ann of Math, 1966, 84: 132–156
CrossRef Google scholar
[24]
Dessai A. The Witten genus and S3-actions on manifolds. Preprint 94/6, Univ of Mainz, 1994
[25]
Dessai A. Rigidity Theorems for Spinc-Manifolds. Topology, 2000, 39: 239–258
CrossRef Google scholar
[26]
Dessai A. Cyclic actions and elliptic genera. Preprint, arXiv: math/0104255
[27]
Dessai A. Obstructions to positive curvature and symmetry. Preprint, arXiv: math/0104256
[28]
Dessai A. Elliptic genera, positive curvature and symmetry. Habilitationsschrift, 2002
[29]
Dessai A. Obstructions to positive curvature and symmetry. Adv Math, 2007, 210: 560–577
CrossRef Google scholar
[30]
Dessai A. Some geometric properties of the Witten genus. In: Proceedings of the Third Arolla Conference on Algebraic Topology August 18-24, 2008. Contemp Math, Vol 504. Providence: Amer Math Soc, 2009, 99–115
CrossRef Google scholar
[31]
Dessai A. Preprint (in preparation)
[32]
Dessai A, Wiemeler M. Complete intersections with S1-action. Transform Groups (to appear)
[33]
tom Dieck T. Bordism of G-manifolds and integrality theorems. Topology, 1970, 9: 345–358
CrossRef Google scholar
[34]
tom Dieck T. Transformation Groups. de Gruyter Stud Math, 8. Berlin: de Gruyter, 1987
[35]
Frankel T. Manifolds with positive curvature. Pacific J Math, 1961, 11: 165–174
CrossRef Google scholar
[36]
Gromov M. Curvature, diameter and Betti numbers. Comment Math Helv, 1981, 56: 179–195
CrossRef Google scholar
[37]
Guillemin VW, Sternberg S. Supersymmetry and Equivariant de Rham Theory. Berlin: Springer, 1999
CrossRef Google scholar
[38]
Hattori A. Spinc-structures and S1-actions. Invent Math, 1978, 48: 7–31
CrossRef Google scholar
[39]
Hattori A, Yoshida T. Lifting compact group actions in fiber bundles. Jpn J Math, 1976, 2: 13–25
[40]
Hirzebruch F. Involutionen auf Mannigfaltigkeiten. In: Proceedings of the Conference on Transformation Groups, New Orleans. 1968, 148–166
[41]
Hirzebruch F. Elliptic genera of level N for complex manifolds. In: Bleuler K, Werner M, eds. Differential Geometrical Methods in Theoretical Physics (Como 1987). NATO Adv Sci Inst Ser C: Math Phys Sci, 250. Armsterdam: Kluwer, 1988, 37–63
CrossRef Google scholar
[42]
Hirzebruch F, Berger Th, Jung R. Manifolds and Modular Forms. Aspects Math, Vol E20. Wiesbaden: Friedr Vieweg, 1992
CrossRef Google scholar
[43]
Hirzebruch F, Slodowy P. Elliptic genera, involutions and homogeneous spin-manifolds. Geom Dedicata, 1990, 35: 309–343
CrossRef Google scholar
[44]
Hirzebruch F, Zagier D. The Atiyah-Singer Theorem and Elementary Number Theory. Math Lecture Series 1. Boston: Publish or Perish, 1974
[45]
Hopf H. Vektorfelder in n-dimensionalen Mannigfaltigkeiten. Math Ann, 1926, 96: 225–250
CrossRef Google scholar
[46]
Hsiang W Y. Cohomology Theory of Topological Transformation Groups. Ergeb Math Grenzgeb. Berlin: Springer, 1975
CrossRef Google scholar
[47]
Jänich K, Ossa E. On the signature of an involution. Topology, 1969, 8: 27–30
CrossRef Google scholar
[48]
Kawakubo K. The Theory of Transformation Groups. Oxford: Oxford Univ Press, 1992
[49]
Kennard L. On the Hopf conjecture with symmetry. Geom Topol, 2013, 17: 563–593
CrossRef Google scholar
[50]
Kobayashi S. Transformation Groups in Differential Geometry. Ergeb Math Grenzgeb. Berlin: Springer, 1972
CrossRef Google scholar
[51]
Kosniowski C. Applications of the holomorphic Lefschetz formula. Bull Lond Math Soc, 1970, 2: 43–48
CrossRef Google scholar
[52]
Kosniowski C. Fixed points and group actions. In: Algebraic Topology, Proc Conf, Aarhus 1982. Lecture Notes in Math, Vol 1051. Berlin: Springer, 1984, 603–609
CrossRef Google scholar
[53]
Kosniowski C, Stong R E. Involutions and characteristic numbers. Topology, 1978, 17: 309–330
CrossRef Google scholar
[54]
Kriˇcever I M. Formal groups and the Atiyah-Hirzebruch formula. Math USSR Investija, 1974, 6: 1271–1285
CrossRef Google scholar
[55]
Kriˇcever I M. Obstructions to the existence of S1-actions. Bordism of ramified coverings. Math USSR Investija, 1977, 10: 783–797
CrossRef Google scholar
[56]
Landweber P S, ed. Elliptic Curves and Modular Forms in Algebraic Topology. Proceedings Princeton 1986. Lecture Notes in Math, Vol 1326. Berlin: Springer, 1988
[57]
Lashof R. Poincaré duality and cobordism. Trans Amer Math Soc, 1963, 109: 257–277
[58]
Lawson H B, MichelsohnM-L. Spin Geometry. Princeton Math Ser 38. Princeton: Princeton Univ Press, 1989
[59]
Lichnerowicz A. Spineurs harmoniques. C R Acad Sci, 1963, 257: 7–9
[60]
Liu K. On modular invariance and rigidity theorems. J Differential Geom, 1995, 41: 343–396
[61]
Lusztig G. Remarks on the holomorphic Lefschetz numbers. In: Analyse globale. Śem Math Sup´erieures, No 42. Montŕeal: Presses Univ Montŕeal, 1971, 193–204
[62]
Milnor J.On the cobordism ring Ω∗ and a complex analogue. Part I. Amer J Math, 1960, 82: 505–521
CrossRef Google scholar
[63]
Milnor J, Stasheff J. Characteristic classes. Ann of Math Stud, Vol 76. Princeton: Princeton Univ Press, 1974
[64]
Musin O R. On rigid Hirzebruch genera. Mosc Math J, 2011, 11: 139–147
[65]
Novikov S P. Some problems in the topology of manifolds connected with the theory of Thom spaces. Soviet Math Dokl, 1960, 1: 717–720
[66]
Petrie T. Smooth S1-actions on homotopy complex projective spaces and related topics. Bull Amer Math Soc, 1972, 78: 105–153
CrossRef Google scholar
[67]
Quillen D. The spectrum of an equivariant cohomology ring. I. Ann of Math, 1971, 98: 549–571
CrossRef Google scholar
[68]
Quillen D. The spectrum of an equivariant cohomology ring. II. Ann of Math, 1971, 98: 573–602
CrossRef Google scholar
[69]
Segal G B. Equivariant K-theory. Publ Math Inst Hautes Études Sci, 1968, 34: 129–151
CrossRef Google scholar
[70]
Stewart T E. Lifting group actions in fibre bundles. Ann of Math, 1961, 74: 192–198
CrossRef Google scholar
[71]
Stolz St.A conjecture concerning positive Ricci curvature and the Witten genus. Math Ann, 1996, 304: 785–800
CrossRef Google scholar
[72]
Su J C. Transformation groups on cohomology projective spaces. Trans Amer Math Soc, 1963, 106: 305–318
CrossRef Google scholar
[73]
Switzer R M. Algebraic Topology—Homotopy and Homology. Grundlehren MathWiss, 212. Berlin: Springer, 1975
CrossRef Google scholar
[74]
Taubes C H. S1 Actions and elliptic genera. Comm Math Phys, 1989, 122: 455–526
CrossRef Google scholar
[75]
Thom R. Espaces fibrés en sphères et carrés de Steenrod. Ann Sci Éc Norm Supér, III Sér, 1952, 69: 109–182
[76]
Thom R. Quelques propriétés globales des variétés différentiables. Comment Math Helv, 1954, 28: 17–86
CrossRef Google scholar
[77]
Tu L W. What is ... equivariant cohomology? Notices Amer Math Soc, 2011, 58: 423–426
[78]
Weisskopf N. Positive curvature and the elliptic genus. Preprint, arXiv: 1305.5175
[79]
Wilking B. Torus actions on manifolds of positive sectional curvature. Acta Math, 2003, 191: 259–297
CrossRef Google scholar
[80]
Wilking B. Nonnegatively and positively curved manifolds. In: Metric and Comparison Geometry. Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 25–62
[81]
Witten E. The index of the Dirac operator in loop space. In: Lecture Notes in Math, Vol 1326. Berlin: Springer, 1988, 161–181
CrossRef Google scholar
[82]
Ziller W. Examples of Riemannian manifolds with non-negative sectional curvature. In: Metric and Comparison Geometry. Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 63–102

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(363 KB)

Accesses

Citations

Detail

Sections
Recommended

/