Curvature notions on graphs

Bobo HUA, Yong LIN

PDF(189 KB)
PDF(189 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1275-1290. DOI: 10.1007/s11464-016-0578-z
SURVEY ARTICLE
SURVEY ARTICLE

Curvature notions on graphs

Author information +
History +

Abstract

We survey some geometric and analytic results under the assumptions of combinatorial curvature bounds for planar/semiplanar graphs and curvature dimension conditions for general graphs.

Keywords

Planar graphs / combinatorial curvature / curvature dimension conditions / harmonic functions

Cite this article

Download citation ▾
Bobo HUA, Yong LIN. Curvature notions on graphs. Front. Math. China, 2016, 11(5): 1275‒1290 https://doi.org/10.1007/s11464-016-0578-z

References

[1]
Bauer F, Horn P, Lin Y, Lippner G, Mangoubi D, Yau S-T. Li-Yau inequality on graphs. J Differential Geom, 2015, 99(3): 359–405
[2]
Bauer F, Hua B, Jost J, Liu S. Generalized Ricci curvature and the geometry of graphs. In: Najman L, Romon P, eds. Discrete Curvature: Theory and Applications. Luminy: Cedram, 2014, 69–78
[3]
Bauer F, Hua B, Jost J, Liu S, Wang G. The geometric meaning of curvature. Local and nonlocal aspects of Ricci curvature. In: Najman L, Romon P, eds. Modern Approaches to Discrete Curvature (to appear)
[4]
Bauer F, Hua B, Yau S-T. Davies–Gaffney–Grigor’yan Lemma on graphs. Comm Anal Geom, 2015, 23(5): 1031–1068
CrossRef Google scholar
[5]
Burago D, Burago Yu, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001
[6]
Chen B. The Gauss-Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature. Proc Amer Math Soc, 2008, 137(5): 1601–1611
CrossRef Google scholar
[7]
Chen B, Chen G. Gauss-Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces. Graphs Combin, 2008, 24(3): 159–183
CrossRef Google scholar
[8]
Colding T H, Minicozzi II W P. Harmonic functions with polynomial growth. J Differential Geom, 1997, 46(1): 1–77
[9]
Colding T H, Minicozzi II W P. Harmonic functions on manifolds. Ann of Math, 1997, 146(3): 725–747
CrossRef Google scholar
[10]
Colding T H, Minicozzi II W P. Liouville theorems for harmonic sections and applications. Comm Pure Appl Math, 1998, 51(2): 113–138
CrossRef Google scholar
[11]
Colding T H, Minicozzi II W P. Weyl type bounds for harmonic functions. Invent Math, 1998, 131(2): 257–298
CrossRef Google scholar
[12]
Coulhon T, Saloff-Coste L. Variétés riemanniennes isométriques à l’infini. Rev Mat Iberoam, 1995, 11(3): 687–726
CrossRef Google scholar
[13]
Delmotte T. Ingalit de Harnack elliptique sur les graphes. Colloq Math, 1997, 72(1): 19–37
[14]
Delmotte T. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev Mat Iberoam, 1999, 15: 181–232
CrossRef Google scholar
[15]
DeVos M, Mohar B. An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture. Trans Amer Math Soc, 2007, 359(7): 3287–3301
CrossRef Google scholar
[16]
Erbar M, Maas J. Ricci curvature of finite Markov chains via convexity of the entropy. Arch Ration Mech Anal, 2012, 206(3): 997–1038
CrossRef Google scholar
[17]
Grigor’yan A, Huang X, Masamune J. On stochastic completeness of jump processes. Math Z, 2012, 271(3-4): 1211–1239
CrossRef Google scholar
[18]
Gromov M. Hyperbolic groups. In: Gersten S M, ed. Essays in Group Theory. Math Sci Res Inst Publ, Vol 8. Berlin: Springer, 1987, 75–263
CrossRef Google scholar
[19]
Häggström O, Jonasson J, Lyons R. Explicit isoperimetric constants and phase transitions in the Random-Cluster model. Ann Probab, 2002, 30(1): 443–473
CrossRef Google scholar
[20]
Higuchi Y. Combinatorial curvature for planar graphs. J Graph Theory, 2001, 38(4): 220–229
CrossRef Google scholar
[21]
Higuchi Y, Shirai T. Isoperimetric constants of (d, f)-regular planar graphs. Interdiscip Inform Sci, 2003, 9(2): 221–228
CrossRef Google scholar
[22]
Horn P, Lin Y, Liu S, Yau S-T. Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. 2014, arXiv: 1411.5087
[23]
Hua B. Generalized Liouville theorem in nonnegatively curved Alexandrov spaces. Chin Ann Math Ser B, 2009, 30(2): 111–128
CrossRef Google scholar
[24]
Hua B, Jost J. Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature II. Trans Amer Math Soc, 2015, 367: 2509–2526
CrossRef Google scholar
[25]
Hua B, Jost J, Liu S. Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. J Reine Angew Math, 2015, 700: 1–36
CrossRef Google scholar
[26]
Hua B, Lin Y. Stochastic completeness for graphs with curvature dimension conditions. 2015, arXiv: 1504.00080
[27]
Ishida M. Pseudo-Curvature of a Graph. Lecture at ‘Workshop on Topological Graph Theory’. Yokohama National University, 1990
[28]
Jost J, Liu S. Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs. Discrete Comput Geom, 2014, 51(2): 300–322
CrossRef Google scholar
[29]
Keller M. Curvature, geometry and spectral properties of planar graphs. Discrete Comput Geom, 2011, 46(3): 500–525
CrossRef Google scholar
[30]
Keller M. An overview of curvature bounds and spectral theory of planar tessellations. In: Najman L, Romon P, eds. Discrete Curvature: Theory and Applications. Cedram, 2014, 61–68
[31]
Keller M, Lenz D. Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math Model Nat Phenom, 2010, 5(4): 198–224
CrossRef Google scholar
[32]
Keller M, Lenz D. Dirichlet forms and stochastic completeness of graphs and subgraphs. J Reine Angew Math, 2012, 666: 189–223
CrossRef Google scholar
[33]
Keller M, Peyerimhoff N. Cheeger constants, growth and spectrum of locally tessellating planar graphs. Math Z, 2010, 268(3-4): 871–886
CrossRef Google scholar
[34]
Kuwae K, Machigashira Y, Shioya T. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math Z, 2001, 238(2): 269–316
CrossRef Google scholar
[35]
Lawrencenko S, Plummer M D, Zha X. Isoperimetric constants of infinite plane graphs. Discrete Comput Geom, 2002, 28(3): 313–330
CrossRef Google scholar
[36]
Li P. Harmonic sections of polynomial growth. Math Res Lett, 1997, 4(1): 35–44
CrossRef Google scholar
[37]
Li P.Geometric Analysis. Cambridge: Cambridge Univ Press, 2009
[38]
Lin Y, Lu L, Yau S T. Ricci curvature of graphs. Tohoku Math J (2), 2011, 63(4): 605–627
[39]
Lin Y, Yau S T. Ricci curvature and eigenvalue estimate on locally finite graphs. Math Res Lett, 2010, 17(2): 343–356
CrossRef Google scholar
[40]
Lin Y, Yau S T. A brief review on geometry and spectrum of graphs. 2012, arXiv: 1204.3168
[41]
Münch F. Remarks on curvature dimension conditions on graphs. 2015, arXiv: 1501.05839
[42]
Nicholson R, Sneddon J. New graphs with thinly spread positive combinatorial curvature. New Zealand J Math, 2011
[43]
Ollivier Y. Ricci curvature of Markov chains on metric spaces. J Funct Anal, 2009, 256(3): 810–864
CrossRef Google scholar
[44]
Réti T, Bitay E, Kosztolányi Z. On the polyhedral graphs with positive combinatorial curvature. Acta Polytechnica Hungarica, 2005, 2(2): 19–37
[45]
Saloff-Coste L. Analysis on Riemannian co-compact covers. Surv Differ Geom, 2004, 9(1): 351–384
CrossRef Google scholar
[46]
Stone D A. A combinatorial analogue of a theorem of Myers. Illinois J Math, 1976, 20(1): 12–21
[47]
Sun L, Yu X. Positively curved cubic plane graphs are finite. J Graph Theory, 2004, 47(4): 241–274
CrossRef Google scholar
[48]
Sunada T. Discrete Geometric Analysis. In: Geometry on Graphs and Its Applications. Proc Sympos Pure Math, Vol 77. Providence: Amer Math Soc, 2008, 51–86
CrossRef Google scholar
[49]
Woess W. A note on tilings and strong isoperimetric inequality. Math Proc Cambridge Philos Soc, 1998, 124(3): 385–393
CrossRef Google scholar
[50]
Woess W. Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Math, Vol 138. Cambridge: Cambridge Univ Press, 2000
CrossRef Google scholar
[51]
Wojciechowski R K. Stochastic Completeness of Graphs. Ph D Thesis, City University of New York, 2008
[52]
Wojciechowski R K. Heat kernel and essential spectrum of infinite graphs. Indiana Univ Math J, 2009, 58(3): 1419–1442
CrossRef Google scholar
[53]
Wojciechowski R K. Stochastically incomplete manifolds and graphs. In: Lenz D, Sobieczky F, Woess W, eds. Random Walks, Boundaries and Spectra. Progress in Probability, Vol 64. Berlin: Springer, 2011, 163–179
CrossRef Google scholar
[54]
Zhang L. A result on combinatorial curvature for embedded graphs on a surface. Discrete Math, 2008, 308(24): 6588–6595
CrossRef Google scholar
[55]
Ż uk A. On the norms of the random walks on planar graphs. Ann Inst Fourier (Grenoble), 1997, 47(5): 1463–1490
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(189 KB)

Accesses

Citations

Detail

Sections
Recommended

/