Isoperimetry of nilpotent groups
Moritz GRUBER
Isoperimetry of nilpotent groups
This survey gives an overview of the isoperimetric properties of nilpotent groups and Lie groups. It discusses results for Dehn functions and filling functions as well as the techniques used to retrieve them. The content reaches from long standing results up to the most recent development.
Nilpotent groups / nilpotent Lie groups / Dehn functions / filling functions
[1] |
Alonso J M, Wang X, Pride S J. Higher-dimensional isoperimetric (or Dehn) functions of groups. J Group Theory, 1999, 2(1): 81–112
|
[2] |
Bridson M R. On the geometry of normal forms in discrete groups. Proc Lond Math Soc (3), 1993, 67(3): 596–616
|
[3] |
Burillo J. Lower bounds of isoperimetric functions for nilpotent groups. In: Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994). DIMACS Ser Discrete Math Theoret Comput Sci, Vol 25. Providence: Amer Math Soc, 1996, 1–8
|
[4] |
Burillo J, Taback J. Equivalence of geometric and combinatorial Dehn functions. New York J Math, 2002, 8: 169–179 (electronic)
|
[5] |
Epstein D B A, Cannon J W, Holt D F, Levy S V F, Paterson M S, Thurston W P. Word Processing in Groups. Boston: Jones and Bartlett Publishers, 1992
|
[6] |
Federer H, Fleming W H. Normal and integral currents. Ann of Math (2), 1960, 72: 458–520
|
[7] |
Gersten S M. Isoperimetric and isodiametric functions of finite presentations. In: Geometric Group Theory, Vol 1 (Sussex, 1991). London Math Soc Lecture Note Ser, Vol 181. Cambridge: Cambridge Univ Press, 1993, 79–96
CrossRef
Google scholar
|
[8] |
Gromov M. Filling Riemannian manifolds. J Differential Geom, 1983, 18(1): 1–147
|
[9] |
Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Progr Math, Vol 152. Boston: Birkhäuser, 1999
|
[10] |
Gruber M. Large Scale Geometry of Stratified Nilpotent Lie Groups (in preparation)
|
[11] |
Korányi A, Ricci F. A classification-free construction of rank-one symmetric spaces. Bull Kerala Math Assoc, 2005, (Special Issue): 73–88 (2007)
|
[12] |
Leuzinger E. Optimal higher-dimensional Dehn functions for some CAT(0) lattices. Groups Geom Dyn, 2014, 8(2): 441–466
CrossRef
Google scholar
|
[13] |
Leuzinger E, Pittet C. On quadratic Dehn functions. Math Z, 2004, 248(4): 725–755
CrossRef
Google scholar
|
[14] |
Niblo G A, Roller M A, eds. Geometric Group Theory, Vol 2. London Math Soc Lecture Note Ser, Vol 182. Cambridge: Cambridge Univ Press, 1993
|
[15] |
Pittet C. Isoperimetric inequalities for homogeneous nilpotent groups. In: Geometric Group Theory (Columbus, OH, 1992). Ohio State Univ Math Res Inst Publ, Vol 3. Berlin: de Gruyter, 1995, 159–164
CrossRef
Google scholar
|
[16] |
Pittet C. Isoperimetric inequalities in nilpotent groups. J Lond Math Soc (2), 1997, 55(3): 588–600
|
[17] |
Raghunathan M S. Discrete Subgroups of Lie Groups. Ergeb Math Grenzgeb, Band 68. New York-Heidelberg: Springer-Verlag, 1972
CrossRef
Google scholar
|
[18] |
Varopoulos N Th, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Cambridge Tracts in Math, Vol 100. Cambridge: Cambridge Univ Press, 1992
|
[19] |
Wenger S. A short proof of Gromov’s filling inequality. Proc Amer Math Soc, 2008, 136(8): 2937–2941
CrossRef
Google scholar
|
[20] |
Wenger S. Nilpotent groups without exactly polynomial Dehn function. J Topol, 2011, 4(1): 141–160
CrossRef
Google scholar
|
[21] |
Wolf J A. Curvature in nilpotent Lie groups. Proc Amer Math Soc, 1964, 15: 271–274
CrossRef
Google scholar
|
[22] |
Young R. High-dimensional fillings in Heisenberg groups. 2010, arXiv: 1006.1636v2
|
[23] |
Young R. Homological and homotopical higher-order filling functions. Groups Geom Dyn, 2011, 5(3): 683–690
CrossRef
Google scholar
|
[24] |
Young R. Filling inequalities for nilpotent groups through approximations. Groups Geom Dyn, 2013, 7(4): 977–1011
CrossRef
Google scholar
|
/
〈 | 〉 |