Almost nonnegative curvature operator and cohomology rings

Martin HERRMANN

PDF(211 KB)
PDF(211 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1259-1274. DOI: 10.1007/s11464-016-0569-0
SURVEY ARTICLE
SURVEY ARTICLE

Almost nonnegative curvature operator and cohomology rings

Author information +
History +

Abstract

We give a survey of results on the construction of and obstructions to metrics of almost nonnegative curvature operator on closed manifolds and results on the cohomology rings of closed, simply-connected manifolds with a lower curvature and upper diameter bound. The latter is motivated by a question of Grove whether these condition imply finiteness of rational homotopy types. This question has answers by F. Fang–X. Rong, B. Totaro and recently A. Dessai and the present author.

Keywords

Nonnegative curvature / homogeneous spaces / curvature operator / almost nonnegative curvature

Cite this article

Download citation ▾
Martin HERRMANN. Almost nonnegative curvature operator and cohomology rings. Front. Math. China, 2016, 11(5): 1259‒1274 https://doi.org/10.1007/s11464-016-0569-0

References

[1]
Aloff S, Wallach N R. An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull Amer Math Soc, 1975, 81: 93–97
CrossRef Google scholar
[2]
Bérard P H.From vanishing theorems to estimating theorems: the Bochner technique revisited. Bull Amer Math Soc (NS), 1988, 19(2): 371–406
CrossRef Google scholar
[3]
Berger M. Sur les groupes d’holonomie homog`ene des variétés àconnexion affine et des variétés riemanniennes. Bull Soc Math France, 1955, 83: 279–330
[4]
Böhm C, Wilking B. Manifolds with positive curvature operators are space forms. Ann of Math (2), 2008, 167(3): 1079–1097
[5]
Bourguignon J-P, Karcher H. Curvature operators: pinching estimates and geometric examples. Ann Sci Éc Norm Supér (4), 1978, 11(1): 71–92
[6]
Cao H D, Chow B. Compact Kähler manifolds with nonnegative curvature operator. Invent Math, 1986, 83(3): 553–556
CrossRef Google scholar
[7]
Cheeger J, Gromoll D. On the structure of complete manifolds of nonnegative curvature. Ann of Math (2), 1972, 96: 413–443
[8]
Chow B, Lu P, Ni L. Hamilton’s Ricci flow. Graduate Studies in Mathematics, Vol 77. Providence/New York: Amer Math Soc/Science Press, 2006
[9]
Dessai A. Nonnegative curvature, low cohomogeneity and complex cohomology. Münster J Math (to appear), http://arxiv.org/abs/1503.08290
[10]
Fang, F Q, Rong X C. Curvature, diameter, homotopy groups, and cohomology rings. Duke Math J, 2001, 107(1): 135–158
CrossRef Google scholar
[11]
Fukaya K, Yamaguchi T. The fundamental groups of almost non-negatively curved manifolds. Ann of Math (2), 1992, 136(2): 253–333
[12]
Gallot S, Meyer D. Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne. J Math Pures Appl (9), 1975, 54(3): 259–284
[13]
Gromov M. Almost flat manifolds. J Differential Geom, 1978, 13(2): 231–241
[14]
Gromov M. Curvature, diameter and Betti numbers. Comment Math Helv, 1981, 56(2): 179–195
CrossRef Google scholar
[15]
Grove K. Critical point theory for distance functions. In: Differential Geometry: Riemannian geometry (Los Angeles, CA, 1990). Proc Sympos Pure Math, Vol 54. Providence: Amer Math Soc, 1993, 357–385
CrossRef Google scholar
[16]
Grove K, Ziller W. Curvature and symmetry of Milnor spheres. Ann of Math (2), 2000, 152(1): 331–367
[17]
Hamilton R S. Four-manifolds with positive curvature operator. J Differential Geom, 1986, 24(2): 153–179
[18]
Herrmann M. Classification and characterization of rationally elliptic manifolds in low dimensions. Preprint, 2014, arXiv: 1409.8036
[19]
Herrmann M. Homogeneous spaces, curvature and cohomology. Differential Geom Appl (to appear)
CrossRef Google scholar
[20]
Herrmann M, Sebastian D, Tuschmann W. Manifolds with almost nonnegative curvature operator and principal bundles. Ann Global Anal Geom, 2013, 44(4): 391–399
CrossRef Google scholar
[21]
Hoelscher C A. On the homology of low-dimensional cohomogeneity one manifolds. Transform Groups, 2010, 15(1): 115–133
CrossRef Google scholar
[22]
Huang H M. Some remarks on the pinching problems. Bull Inst Math Acad Sin, 1981, 9(2): 321–340
[23]
Kapovitch V, Petrunin A, Tuschmann W. Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces. Ann of Math (2), 2010, 171(1): 343–373
[24]
Klaus S. Einfach-zusammenhängende Kompakte Homogene Räume bis zur Dimension Neun. Diploma Thesis. Johannes Gutenberg Universität Mainz, 1988
[25]
Li P. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann Sci Éc Norm Supér, 1980, 13(4): 451–468
[26]
Lott J. Collapsing with a lower bound on the curvature operator. Adv Math, 2014, 256: 291–317
CrossRef Google scholar
[27]
Mercuri F, Noronha M H. On the topology of complete Riemannian manifolds with nonnegative curvature operator. Rend Sem Fac Sci Univ Cagliari, 1993, 63(2): 149–171
[28]
Micallef M J, Moore J D. Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann of Math (2), 1988, 127(1): 199–227
[29]
Mori S. Projective manifolds with ample tangent bundles. Ann of Math (2), 1979, 110(3): 593–606
[30]
Noronha M H. A splitting theorem for complete manifolds with nonnegative curvature operator. Proc Amer Math Soc, 1989, 105(4): 979–985
CrossRef Google scholar
[31]
Petersen P. Riemannian Geometry. 2nd ed. Grad. Texts in Math, Vol 171. New York: Springer, 2006
[32]
Petrunin A, Tuschmann W. Diffeomorphism finiteness, positive pinching, and second homotopy. Geom Funct Anal, 1999, 9(4): 736–774
CrossRef Google scholar
[33]
Püttmann T. Optimal pinching constants of odd dimensional homogeneous spaces. Invent Math, 1999, 138(3): 631–684
CrossRef Google scholar
[34]
Schwachhöfer L J, Tuschmann W. Curvature and cohomogeneity one. Max Planck Institute for Mathematics in the Sciences, MIS-Preprint 62/2001, 2001, http://www.mis.mpg.de/de/publications/preprints/2001/prepr2001-62.html
[35]
Schwachhöfer L J, Tuschmann W. Metrics of positive Ricci curvature on quotient spaces. Math Ann, 2004, 330(1): 59–91
CrossRef Google scholar
[36]
Sebastian D. Konstruktionen von Mannigfaltigkeiten mit fast nichtnegativem Krümmungsoperator. Dissertation. Karlsruhe Institute of Technology, 2011
[37]
Siu Y T, Yau S T. Compact Kähler manifolds of positive bisectional curvature. Invent Math, 1980, 59(2): 189–204
CrossRef Google scholar
[38]
Stewart T E. Lifting group actions in fibre bundles. Ann of Math (2), 1961, 74: 192–198
[39]
Strake M. A splitting theorem for open nonnegatively curved manifolds. Manuscripta Math, 1988, 61(3): 315–325
CrossRef Google scholar
[40]
Tachibana S. A theorem of Riemannian manifolds of positive curvature operator. Proc Japan Acad, 1974, 50: 301–302
CrossRef Google scholar
[41]
Totaro B. Curvature, diameter, and quotient manifolds. Math Res Lett, 2003, 10(2-3): 191–203
CrossRef Google scholar
[42]
Tuschmann W. Geometric diffeomorphism finiteness in low dimensions and homotopy group finiteness. Math Ann, 2002, 322(2): 413–420
CrossRef Google scholar
[43]
Tuschmann W. Collapsing and almost nonnegative curvature. In: Global Differential Geometry. Springer Proc Math, Vol 17. Heidelberg: Springer, 2012, 93–106
CrossRef Google scholar
[44]
Wilking B. On fundamental groups of manifolds of nonnegative curvature. Differential Geom Appl, 2000, 13(2): 129–165
CrossRef Google scholar
[45]
Yim J-W. Space of souls in a complete open manifold of nonnegative curvature. J Differential Geom, 1990, 32(2): 429–455

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/